Compare commits
12 Commits
df740140b1
...
fd924fa024
Author | SHA1 | Date |
---|---|---|
|
fd924fa024 | |
|
96e14b9674 | |
|
f3e59a6586 | |
|
38530d5d44 | |
|
b0d0b41944 | |
|
ef19e24f11 | |
|
45d6802cd7 | |
|
c4e9432375 | |
|
391a03baed | |
|
ac3fabd55f | |
|
ced7e8a214 | |
|
16f8de2175 |
|
@ -34,4 +34,4 @@ jobs:
|
|||
VECTORDB_TOKEN: ${{ secrets.VECTORDB_TOKEN }}
|
||||
run: |
|
||||
cd VectorLoader
|
||||
python -m src.run --full
|
||||
python -m src.run
|
||||
|
|
13
README.md
13
README.md
|
@ -26,15 +26,22 @@ pip install git+https://gitea.fabelous.app/Machine-Learning/aiuNN.git
|
|||
Here's a basic example of how to use `aiuNN` for image upscaling:
|
||||
|
||||
```python src/main.py
|
||||
from aiia import AIIABase
|
||||
from aiia import AIIABase, AIIAConfig
|
||||
from aiunn import aiuNN, aiuNNTrainer
|
||||
import pandas as pd
|
||||
from torchvision import transforms
|
||||
|
||||
# Create a configuration and build a base model.
|
||||
config = AIIAConfig()
|
||||
ai_config = aiuNNConfig()
|
||||
|
||||
base_model = AIIABase(config)
|
||||
upscaler = aiuNN(config=ai_config)
|
||||
|
||||
# Load your base model and upscaler
|
||||
pretrained_model_path = "path/to/aiia/model"
|
||||
base_model = AIIABase.load(pretrained_model_path, precision="bf16")
|
||||
upscaler = aiuNN(base_model)
|
||||
base_model = AIIABase.from_pretrained(pretrained_model_path)
|
||||
upscaler.load_base_model(base_model)
|
||||
|
||||
# Create trainer with your dataset class
|
||||
trainer = aiuNNTrainer(upscaler, dataset_class=UpscaleDataset)
|
||||
|
|
2
setup.py
2
setup.py
|
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
|||
|
||||
setup(
|
||||
name="aiunn",
|
||||
version="0.1.2",
|
||||
version="0.2.1",
|
||||
packages=find_packages(where="src"),
|
||||
package_dir={"": "src"},
|
||||
install_requires=[
|
||||
|
|
|
@ -3,4 +3,4 @@ from .upsampler.aiunn import aiuNN
|
|||
from .upsampler.config import aiuNNConfig
|
||||
from .inference.inference import aiuNNInference
|
||||
|
||||
__version__ = "0.1.2"
|
||||
__version__ = "0.2.1"
|
|
@ -10,6 +10,7 @@ from torch.utils.checkpoint import checkpoint
|
|||
import gc
|
||||
import time
|
||||
import shutil
|
||||
import datetime
|
||||
|
||||
|
||||
class EarlyStopping:
|
||||
|
@ -50,10 +51,16 @@ class aiuNNTrainer:
|
|||
self.optimizer = None
|
||||
self.scaler = GradScaler()
|
||||
self.best_loss = float('inf')
|
||||
self.use_checkpointing = True
|
||||
self.csv_path = None
|
||||
self.checkpoint_dir = None
|
||||
self.data_loader = None
|
||||
self.validation_loader = None
|
||||
self.log_dir = None
|
||||
self.last_checkpoint_time = time.time()
|
||||
self.checkpoint_interval = 2 * 60 * 60 # 2 hours
|
||||
self.last_22_date = None
|
||||
self.recent_checkpoints = []
|
||||
self.current_epoch = 0
|
||||
|
||||
|
||||
def load_data(self, dataset_params=None, batch_size=1, validation_split=0.2, custom_train_dataset=None, custom_val_dataset=None):
|
||||
"""
|
||||
|
@ -110,23 +117,19 @@ class aiuNNTrainer:
|
|||
return self.data_loader, self.validation_loader
|
||||
|
||||
def _setup_logging(self, output_path):
|
||||
"""Set up directory structure for logging and model checkpoints"""
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
self.log_dir = os.path.join(output_path, f"training_run_{timestamp}")
|
||||
os.makedirs(self.log_dir, exist_ok=True)
|
||||
|
||||
"""Set up basic logging and checkpoint directory"""
|
||||
# Create checkpoint directory
|
||||
self.checkpoint_dir = os.path.join(self.log_dir, "checkpoints")
|
||||
self.checkpoint_dir = os.path.join(output_path, "checkpoints")
|
||||
os.makedirs(self.checkpoint_dir, exist_ok=True)
|
||||
|
||||
# Set up CSV logging
|
||||
self.csv_path = os.path.join(self.log_dir, 'training_log.csv')
|
||||
self.csv_path = os.path.join(output_path, 'training_log.csv')
|
||||
with open(self.csv_path, mode='w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
if self.validation_loader:
|
||||
writer.writerow(['Epoch', 'Train Loss', 'Validation Loss', 'Improved'])
|
||||
writer.writerow(['Epoch', 'Train Loss', 'Validation Loss'])
|
||||
else:
|
||||
writer.writerow(['Epoch', 'Train Loss', 'Improved'])
|
||||
writer.writerow(['Epoch', 'Train Loss'])
|
||||
|
||||
def _evaluate(self):
|
||||
"""Evaluate the model on validation data"""
|
||||
|
@ -152,63 +155,99 @@ class aiuNNTrainer:
|
|||
self.model.train()
|
||||
return val_loss
|
||||
|
||||
def _save_checkpoint(self, epoch, is_best=False):
|
||||
"""Save model checkpoint"""
|
||||
checkpoint_path = os.path.join(self.checkpoint_dir, f"epoch_{epoch}.pt")
|
||||
best_model_path = os.path.join(self.log_dir, "best_model")
|
||||
def _save_checkpoint(self, epoch, batch_count, is_best=False, is_22=False):
|
||||
"""Save checkpoint with support for regular, best, and 22:00 saves"""
|
||||
if is_22:
|
||||
today = datetime.datetime.now(datetime.timezone(datetime.timedelta(hours=2))).date()
|
||||
checkpoint_name = f"checkpoint_22h_{today.strftime('%Y%m%d')}.pt"
|
||||
else:
|
||||
checkpoint_name = f"checkpoint_epoch{epoch}_batch{batch_count}.pt"
|
||||
|
||||
# Save the model checkpoint
|
||||
self.model.save(checkpoint_path)
|
||||
checkpoint_path = os.path.join(self.checkpoint_dir, checkpoint_name)
|
||||
|
||||
# If this is the best model so far, copy it to best_model
|
||||
checkpoint_data = {
|
||||
'epoch': epoch,
|
||||
'batch': batch_count,
|
||||
'model_state_dict': self.model.state_dict(),
|
||||
'optimizer_state_dict': self.optimizer.state_dict(),
|
||||
'best_loss': self.best_loss,
|
||||
'scaler_state_dict': self.scaler.state_dict()
|
||||
}
|
||||
|
||||
torch.save(checkpoint_data, checkpoint_path)
|
||||
|
||||
# Save best model separately
|
||||
if is_best:
|
||||
if os.path.exists(best_model_path):
|
||||
shutil.rmtree(best_model_path)
|
||||
self.model.save(best_model_path)
|
||||
print(f"Saved new best model with loss: {self.best_loss:.6f}")
|
||||
best_model_path = os.path.join(os.path.dirname(self.checkpoint_dir), "best_model")
|
||||
self.model.save_pretrained(best_model_path)
|
||||
|
||||
return checkpoint_path
|
||||
|
||||
def _handle_checkpoints(self, epoch, batch_count, is_improved):
|
||||
"""Handle periodic and 22:00 checkpoint saving"""
|
||||
current_time = time.time()
|
||||
current_dt = datetime.datetime.now(datetime.timezone(datetime.timedelta(hours=2)))
|
||||
|
||||
# Regular interval checkpoint
|
||||
if (current_time - self.last_checkpoint_time) >= self.checkpoint_interval:
|
||||
self._save_checkpoint(epoch, batch_count, is_improved)
|
||||
self.last_checkpoint_time = current_time
|
||||
|
||||
# Special 22:00 checkpoint
|
||||
is_22_oclock = current_dt.hour == 22 and current_dt.minute < 15
|
||||
if is_22_oclock and self.last_22_date != current_dt.date():
|
||||
self._save_checkpoint(epoch, batch_count, is_improved, is_22=True)
|
||||
self.last_22_date = current_dt.date()
|
||||
|
||||
def finetune(self, output_path, epochs=10, lr=1e-4, patience=3, min_delta=0.001):
|
||||
"""
|
||||
Finetune the upscaler model
|
||||
|
||||
Args:
|
||||
output_path (str): Directory to save models and logs
|
||||
epochs (int): Maximum number of training epochs
|
||||
lr (float): Learning rate
|
||||
patience (int): Early stopping patience
|
||||
min_delta (float): Minimum improvement for early stopping
|
||||
"""
|
||||
# Check if data is loaded
|
||||
"""Finetune the upscaler model"""
|
||||
if self.data_loader is None:
|
||||
raise ValueError("Data not loaded. Call load_data first.")
|
||||
|
||||
# Setup optimizer
|
||||
# Setup optimizer and directories
|
||||
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
|
||||
self.checkpoint_dir = os.path.join(output_path, "checkpoints")
|
||||
os.makedirs(self.checkpoint_dir, exist_ok=True)
|
||||
|
||||
# Set up logging
|
||||
self._setup_logging(output_path)
|
||||
# Setup CSV logging
|
||||
self.csv_path = os.path.join(output_path, 'training_log.csv')
|
||||
with open(self.csv_path, mode='w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
header = ['Epoch', 'Train Loss', 'Validation Loss'] if self.validation_loader else ['Epoch', 'Train Loss']
|
||||
writer.writerow(header)
|
||||
|
||||
# Load existing checkpoint if available
|
||||
checkpoint_info = self.load_checkpoint()
|
||||
start_epoch = checkpoint_info[0] if checkpoint_info else 0
|
||||
start_batch = checkpoint_info[1] if checkpoint_info else 0
|
||||
|
||||
# Setup early stopping
|
||||
early_stopping = EarlyStopping(patience=patience, min_delta=min_delta)
|
||||
self.best_loss = float('inf')
|
||||
|
||||
# Training loop
|
||||
self.model.train()
|
||||
|
||||
for epoch in range(epochs):
|
||||
# Training phase
|
||||
for epoch in range(start_epoch, epochs):
|
||||
self.current_epoch = epoch
|
||||
epoch_loss = 0.0
|
||||
progress_bar = tqdm(self.data_loader, desc=f"Epoch {epoch + 1}/{epochs}")
|
||||
|
||||
for low_res, high_res in progress_bar:
|
||||
# Move data to GPU with channels_last format where possible
|
||||
train_batches = list(enumerate(self.data_loader))
|
||||
start_idx = start_batch if epoch == start_epoch else 0
|
||||
|
||||
progress_bar = tqdm(train_batches[start_idx:],
|
||||
initial=start_idx,
|
||||
total=len(train_batches),
|
||||
desc=f"Epoch {epoch + 1}/{epochs}")
|
||||
|
||||
for batch_idx, (low_res, high_res) in progress_bar:
|
||||
# Training step
|
||||
low_res = low_res.to(self.device, non_blocking=True).to(memory_format=torch.channels_last)
|
||||
high_res = high_res.to(self.device, non_blocking=True)
|
||||
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
with autocast(device_type=self.device.type):
|
||||
if self.use_checkpointing:
|
||||
# Ensure the input tensor requires gradient so that checkpointing records the computation graph
|
||||
if hasattr(self, 'use_checkpointing') and self.use_checkpointing:
|
||||
low_res.requires_grad_()
|
||||
outputs = checkpoint(self.model, low_res)
|
||||
else:
|
||||
|
@ -222,69 +261,109 @@ class aiuNNTrainer:
|
|||
epoch_loss += loss.item()
|
||||
progress_bar.set_postfix({'loss': loss.item()})
|
||||
|
||||
# Optionally delete variables to free memory
|
||||
# Handle checkpoints
|
||||
self._handle_checkpoints(epoch + 1, batch_idx + 1, loss.item() < self.best_loss)
|
||||
|
||||
del low_res, high_res, outputs, loss
|
||||
|
||||
# Calculate average epoch loss
|
||||
# End of epoch processing
|
||||
avg_train_loss = epoch_loss / len(self.data_loader)
|
||||
|
||||
# Validation phase (if validation loader exists)
|
||||
# Validation phase
|
||||
if self.validation_loader:
|
||||
val_loss = self._evaluate() / len(self.validation_loader)
|
||||
is_improved = val_loss < self.best_loss
|
||||
if is_improved:
|
||||
self.best_loss = val_loss
|
||||
|
||||
# Log results
|
||||
print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {avg_train_loss:.6f}, Val Loss: {val_loss:.6f}")
|
||||
# Log to CSV
|
||||
with open(self.csv_path, mode='a', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow([epoch + 1, avg_train_loss, val_loss, "Yes" if is_improved else "No"])
|
||||
writer.writerow([epoch + 1, avg_train_loss, val_loss])
|
||||
|
||||
print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {avg_train_loss:.6f}, Val Loss: {val_loss:.6f}")
|
||||
else:
|
||||
# If no validation, use training loss for improvement tracking
|
||||
is_improved = avg_train_loss < self.best_loss
|
||||
if is_improved:
|
||||
self.best_loss = avg_train_loss
|
||||
|
||||
# Log results
|
||||
print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {avg_train_loss:.6f}")
|
||||
# Log to CSV
|
||||
with open(self.csv_path, mode='a', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow([epoch + 1, avg_train_loss, "Yes" if is_improved else "No"])
|
||||
writer.writerow([epoch + 1, avg_train_loss])
|
||||
|
||||
# Save checkpoint
|
||||
self._save_checkpoint(epoch + 1, is_best=is_improved)
|
||||
print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {avg_train_loss:.6f}")
|
||||
|
||||
# Perform garbage collection and clear GPU cache after each epoch
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
# Save best model if improved
|
||||
if is_improved:
|
||||
best_model_path = os.path.join(output_path, "best_model")
|
||||
self.model.save_pretrained(best_model_path)
|
||||
|
||||
# Check early stopping
|
||||
early_stopping(val_loss if self.validation_loader else avg_train_loss)
|
||||
if early_stopping.early_stop:
|
||||
if early_stopping(val_loss if self.validation_loader else avg_train_loss):
|
||||
print(f"Early stopping triggered at epoch {epoch + 1}")
|
||||
break
|
||||
|
||||
# Cleanup
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return self.best_loss
|
||||
|
||||
def load_checkpoint(self, specific_checkpoint=None):
|
||||
"""Enhanced checkpoint loading with specific checkpoint support"""
|
||||
if specific_checkpoint:
|
||||
checkpoint_path = os.path.join(self.checkpoint_dir, specific_checkpoint)
|
||||
else:
|
||||
checkpoint_files = [f for f in os.listdir(self.checkpoint_dir)
|
||||
if f.startswith("checkpoint_") and f.endswith(".pt")]
|
||||
if not checkpoint_files:
|
||||
return None
|
||||
|
||||
checkpoint_files.sort(key=lambda x: os.path.getmtime(
|
||||
os.path.join(self.checkpoint_dir, x)), reverse=True)
|
||||
checkpoint_path = os.path.join(self.checkpoint_dir, checkpoint_files[0])
|
||||
|
||||
if not os.path.exists(checkpoint_path):
|
||||
return None
|
||||
|
||||
checkpoint = torch.load(checkpoint_path, map_location=self.device)
|
||||
self.model.load_state_dict(checkpoint['model_state_dict'])
|
||||
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
||||
self.scaler.load_state_dict(checkpoint['scaler_state_dict'])
|
||||
self.best_loss = checkpoint['best_loss']
|
||||
|
||||
print(f"Loaded checkpoint from {checkpoint_path}")
|
||||
return checkpoint['epoch'], checkpoint['batch']
|
||||
|
||||
def save(self, output_path=None):
|
||||
"""
|
||||
Save the best model to the specified path
|
||||
|
||||
Args:
|
||||
output_path (str, optional): Path to save the model. If None, uses the best model from training.
|
||||
output_path (str, optional): Path to save the model. If None, tries to use the checkpoint directory from training.
|
||||
|
||||
Returns:
|
||||
str: Path where the model was saved
|
||||
|
||||
Raises:
|
||||
ValueError: If no output path is specified and no checkpoint directory exists
|
||||
"""
|
||||
if output_path is None and self.log_dir is not None:
|
||||
best_model_path = os.path.join(self.log_dir, "best_model")
|
||||
if output_path is None and self.checkpoint_dir is not None:
|
||||
# First try to copy the best model if it exists
|
||||
best_model_path = os.path.join(os.path.dirname(self.checkpoint_dir), "best_model")
|
||||
if os.path.exists(best_model_path):
|
||||
print(f"Best model already saved at {best_model_path}")
|
||||
return best_model_path
|
||||
output_path = os.path.join(os.path.dirname(self.checkpoint_dir), "final_model")
|
||||
shutil.copytree(best_model_path, output_path, dirs_exist_ok=True)
|
||||
print(f"Copied best model to {output_path}")
|
||||
return output_path
|
||||
else:
|
||||
output_path = os.path.join(self.log_dir, "final_model")
|
||||
# If no best model exists, save current model state
|
||||
output_path = os.path.join(os.path.dirname(self.checkpoint_dir), "final_model")
|
||||
|
||||
if output_path is None:
|
||||
raise ValueError("No output path specified and no training has been done yet.")
|
||||
raise ValueError("No output path specified and no checkpoint directory exists from training.")
|
||||
|
||||
self.model.save(output_path)
|
||||
self.model.save_pretrained(output_path)
|
||||
print(f"Model saved to {output_path}")
|
||||
return output_path
|
|
@ -12,13 +12,13 @@ class aiuNNInference:
|
|||
Inference class for aiuNN upsampling model.
|
||||
Handles model loading, image upscaling, and output processing.
|
||||
"""
|
||||
def __init__(self, model_path: str, precision: Optional[str] = None, device: Optional[str] = None):
|
||||
def __init__(self, model_path: str, device: Optional[str] = None):
|
||||
"""
|
||||
Initialize the inference class by loading the aiuNN model.
|
||||
|
||||
Args:
|
||||
model_path: Path to the saved model directory
|
||||
precision: Optional precision setting ('fp16', 'bf16', or None for default)
|
||||
|
||||
device: Optional device specification ('cuda', 'cpu', or None for auto-detection)
|
||||
"""
|
||||
|
||||
|
@ -30,7 +30,7 @@ class aiuNNInference:
|
|||
self.device = device
|
||||
|
||||
# Load the model with specified precision
|
||||
self.model = aiuNN.load(model_path, precision=precision)
|
||||
self.model = aiuNN.from_pretrained(model_path)
|
||||
self.model.to(self.device)
|
||||
self.model.eval()
|
||||
|
||||
|
@ -160,54 +160,11 @@ class aiuNNInference:
|
|||
|
||||
return binary_data
|
||||
|
||||
def process_batch(self,
|
||||
images: List[Union[str, Image.Image]],
|
||||
output_dir: Optional[str] = None,
|
||||
save_format: str = 'PNG',
|
||||
return_binary: bool = False) -> Union[List[Image.Image], List[bytes], None]:
|
||||
"""
|
||||
Process multiple images in batch.
|
||||
|
||||
Args:
|
||||
images: List of input images (paths or PIL Images)
|
||||
output_dir: Optional directory to save results
|
||||
save_format: Format to use when saving images
|
||||
return_binary: Whether to return binary data instead of PIL Images
|
||||
|
||||
Returns:
|
||||
List of processed images or binary data, or None if only saving
|
||||
"""
|
||||
results = []
|
||||
|
||||
for i, img in enumerate(images):
|
||||
# Upscale the image
|
||||
upscaled = self.upscale(img)
|
||||
|
||||
# Save if output directory is provided
|
||||
if output_dir:
|
||||
# Extract filename if input is a path
|
||||
if isinstance(img, str):
|
||||
filename = os.path.basename(img)
|
||||
base, _ = os.path.splitext(filename)
|
||||
else:
|
||||
base = f"upscaled_{i}"
|
||||
|
||||
output_path = os.path.join(output_dir, f"{base}.{save_format.lower()}")
|
||||
self.save(upscaled, output_path, format=save_format)
|
||||
|
||||
# Add to results based on return type
|
||||
if return_binary:
|
||||
results.append(self.convert_to_binary(upscaled, format=save_format))
|
||||
else:
|
||||
results.append(upscaled)
|
||||
|
||||
return results if (not output_dir or return_binary or not save_format) else None
|
||||
|
||||
|
||||
# Example usage (can be removed)
|
||||
if __name__ == "__main__":
|
||||
# Initialize inference with a model path
|
||||
inferencer = aiuNNInference("path/to/model", precision="bf16")
|
||||
inferencer = aiuNNInference("path/to/model")
|
||||
|
||||
# Upscale a single image
|
||||
upscaled_image = inferencer.upscale("input_image.jpg")
|
||||
|
@ -218,9 +175,3 @@ if __name__ == "__main__":
|
|||
# Convert to binary
|
||||
binary_data = inferencer.convert_to_binary(upscaled_image)
|
||||
|
||||
# Process a batch of images
|
||||
inferencer.process_batch(
|
||||
["image1.jpg", "image2.jpg"],
|
||||
output_dir="output_folder",
|
||||
save_format="PNG"
|
||||
)
|
|
@ -2,16 +2,16 @@ import os
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import warnings
|
||||
from aiia.model.Model import AIIA, AIIAConfig, AIIABase
|
||||
from aiia.model.Model import AIIAConfig, AIIABase
|
||||
from transformers import PreTrainedModel
|
||||
from .config import aiuNNConfig
|
||||
import warnings
|
||||
|
||||
|
||||
class aiuNN(AIIA):
|
||||
def __init__(self, base_model: AIIA, config:aiuNNConfig):
|
||||
super().__init__(base_model.config)
|
||||
self.base_model = base_model
|
||||
|
||||
class aiuNN(PreTrainedModel):
|
||||
config_class = aiuNNConfig
|
||||
def __init__(self, config: aiuNNConfig):
|
||||
super().__init__(config)
|
||||
# Pass the unified base configuration using the new parameter.
|
||||
self.config = config
|
||||
|
||||
|
@ -26,118 +26,18 @@ class aiuNN(AIIA):
|
|||
)
|
||||
self.pixel_shuffle = nn.PixelShuffle(scale_factor)
|
||||
|
||||
def load_base_model(self, base_model: PreTrainedModel):
|
||||
self.base_model = base_model
|
||||
|
||||
def forward(self, x):
|
||||
if self.base_model is None:
|
||||
raise ValueError("Base model is not loaded. Call 'load_base_model' before forwarding.")
|
||||
x = self.base_model(x) # Get base features
|
||||
x = self.pixel_shuffle_conv(x) # Expand channels for shuffling
|
||||
x = self.pixel_shuffle(x) # Rearrange channels into spatial dimensions
|
||||
return x
|
||||
|
||||
|
||||
@classmethod
|
||||
def load(cls, path, precision: str = None, **kwargs):
|
||||
"""
|
||||
Load a aiuNN model from disk with automatic detection of base model type.
|
||||
|
||||
Args:
|
||||
path (str): Directory containing the stored configuration and model parameters.
|
||||
precision (str, optional): Desired precision for the model's parameters.
|
||||
**kwargs: Additional keyword arguments to override configuration parameters.
|
||||
|
||||
Returns:
|
||||
An instance of aiuNN with loaded weights.
|
||||
"""
|
||||
# Load the configuration
|
||||
config = aiuNNConfig.load(path)
|
||||
|
||||
# Determine the device
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
# Load the state dictionary
|
||||
state_dict = torch.load(os.path.join(path, "model.pth"), map_location=device)
|
||||
|
||||
# Import all model types
|
||||
from aiia.model.Model import AIIABase, AIIABaseShared, AIIAExpert, AIIAmoe, AIIAchunked, AIIArecursive
|
||||
|
||||
# Helper function to detect base class type from key patterns
|
||||
def detect_base_class_type(keys_prefix):
|
||||
if any(f"{keys_prefix}.shared_layer" in key for key in state_dict.keys()):
|
||||
return AIIABaseShared
|
||||
else:
|
||||
return AIIABase
|
||||
|
||||
# Detect base model type
|
||||
base_model = None
|
||||
|
||||
# Check for AIIAmoe with multiple experts
|
||||
if any("base_model.experts" in key for key in state_dict.keys()):
|
||||
# Count the number of experts
|
||||
max_expert_idx = -1
|
||||
for key in state_dict.keys():
|
||||
if "base_model.experts." in key:
|
||||
try:
|
||||
parts = key.split("base_model.experts.")[1].split(".")
|
||||
expert_idx = int(parts[0])
|
||||
max_expert_idx = max(max_expert_idx, expert_idx)
|
||||
except (ValueError, IndexError):
|
||||
pass
|
||||
|
||||
if max_expert_idx >= 0:
|
||||
# Determine the type of base_cnn each expert is using
|
||||
base_class_for_experts = detect_base_class_type("base_model.experts.0.base_cnn")
|
||||
|
||||
# Create AIIAmoe with the detected expert count and base class
|
||||
base_model = AIIAmoe(config, num_experts=max_expert_idx+1, base_class=base_class_for_experts, **kwargs)
|
||||
|
||||
# Check for AIIAchunked or AIIArecursive
|
||||
elif any("base_model.chunked_cnn" in key for key in state_dict.keys()):
|
||||
if any("recursion_depth" in key for key in state_dict.keys()):
|
||||
# This is an AIIArecursive model
|
||||
base_class = detect_base_class_type("base_model.chunked_cnn.base_cnn")
|
||||
base_model = AIIArecursive(config, base_class=base_class, **kwargs)
|
||||
else:
|
||||
# This is an AIIAchunked model
|
||||
base_class = detect_base_class_type("base_model.chunked_cnn.base_cnn")
|
||||
base_model = AIIAchunked(config, base_class=base_class, **kwargs)
|
||||
|
||||
# Check for AIIAExpert
|
||||
elif any("base_model.base_cnn" in key for key in state_dict.keys()):
|
||||
# Determine which base class the expert is using
|
||||
base_class = detect_base_class_type("base_model.base_cnn")
|
||||
base_model = AIIAExpert(config, base_class=base_class, **kwargs)
|
||||
|
||||
# If none of the above, use AIIABase or AIIABaseShared directly
|
||||
else:
|
||||
base_class = detect_base_class_type("base_model")
|
||||
base_model = base_class(config, **kwargs)
|
||||
|
||||
# Create the aiuNN model with the detected base model
|
||||
model = cls(base_model, config=base_model.config)
|
||||
|
||||
# Handle precision conversion
|
||||
dtype = None
|
||||
if precision is not None:
|
||||
if precision.lower() == 'fp16':
|
||||
dtype = torch.float16
|
||||
elif precision.lower() == 'bf16':
|
||||
if device == 'cuda' and not torch.cuda.is_bf16_supported():
|
||||
warnings.warn("BF16 is not supported on this GPU. Falling back to FP16.")
|
||||
dtype = torch.float16
|
||||
else:
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
raise ValueError("Unsupported precision. Use 'fp16', 'bf16', or leave as None.")
|
||||
|
||||
if dtype is not None:
|
||||
for key, param in state_dict.items():
|
||||
if torch.is_tensor(param):
|
||||
state_dict[key] = param.to(dtype)
|
||||
|
||||
# Load the state dict
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from aiia import AIIABase, AIIAConfig
|
||||
|
@ -146,11 +46,11 @@ if __name__ == "__main__":
|
|||
ai_config = aiuNNConfig()
|
||||
base_model = AIIABase(config)
|
||||
# Instantiate Upsampler from the base model (works correctly).
|
||||
upsampler = aiuNN(base_model, config=ai_config)
|
||||
|
||||
upsampler = aiuNN(config=ai_config)
|
||||
upsampler.load_base_model(base_model)
|
||||
# Save the model (both configuration and weights).
|
||||
upsampler.save("aiunn")
|
||||
upsampler.save_pretrained("aiunn")
|
||||
|
||||
# Now load using the overridden load method; this will load the complete model.
|
||||
upsampler_loaded = aiuNN.load("aiunn", precision="bf16")
|
||||
upsampler_loaded = aiuNN.from_pretrained("aiunn")
|
||||
print("Updated configuration:", upsampler_loaded.config.__dict__)
|
||||
|
|
|
@ -21,9 +21,8 @@ def real_model(tmp_path):
|
|||
base_model = AIIABase(config)
|
||||
|
||||
# Make sure aiuNN is properly configured with all required attributes
|
||||
upsampler = aiuNN(base_model, config=ai_config)
|
||||
# Ensure the upsample attribute is properly set if needed
|
||||
# upsampler.upsample = ... # Add any necessary initialization
|
||||
upsampler = aiuNN(config=ai_config)
|
||||
upsampler.load_base_model(base_model)
|
||||
|
||||
# Save the model and config to temporary directory
|
||||
save_path = str(model_dir / "save")
|
||||
|
@ -40,10 +39,10 @@ def real_model(tmp_path):
|
|||
json.dump(config_data, f)
|
||||
|
||||
# Save model
|
||||
upsampler.save(save_path)
|
||||
upsampler.save_pretrained(save_path)
|
||||
|
||||
# Load model in inference mode
|
||||
inference_model = aiuNNInference(model_path=save_path, precision='fp16', device='cpu')
|
||||
inference_model = aiuNNInference(model_path=save_path, device='cpu')
|
||||
return inference_model
|
||||
|
||||
|
||||
|
@ -88,12 +87,3 @@ def test_convert_to_binary(inference):
|
|||
result = inference.convert_to_binary(test_image)
|
||||
assert isinstance(result, bytes)
|
||||
assert len(result) > 0
|
||||
|
||||
def test_process_batch(inference):
|
||||
# Create test images
|
||||
test_array = np.zeros((100, 100, 3), dtype=np.uint8)
|
||||
test_images = [Image.fromarray(test_array) for _ in range(2)]
|
||||
|
||||
results = inference.process_batch(test_images)
|
||||
assert len(results) == 2
|
||||
assert all(isinstance(img, Image.Image) for img in results)
|
|
@ -10,39 +10,21 @@ def test_save_and_load_model():
|
|||
config = AIIAConfig()
|
||||
ai_config = aiuNNConfig()
|
||||
base_model = AIIABase(config)
|
||||
upsampler = aiuNN(base_model, config=ai_config)
|
||||
|
||||
upsampler = aiuNN(config=ai_config)
|
||||
upsampler.load_base_model(base_model)
|
||||
# Save the model
|
||||
save_path = os.path.join(tmpdirname, "model")
|
||||
upsampler.save(save_path)
|
||||
upsampler.save_pretrained(save_path)
|
||||
|
||||
# Load the model
|
||||
loaded_upsampler = aiuNN.load(save_path)
|
||||
loaded_upsampler = aiuNN.from_pretrained(save_path)
|
||||
|
||||
# Verify that the loaded model is the same as the original model
|
||||
assert isinstance(loaded_upsampler, aiuNN)
|
||||
assert loaded_upsampler.config.__dict__ == upsampler.config.__dict__
|
||||
assert loaded_upsampler.config.hidden_size == upsampler.config.hidden_size
|
||||
assert loaded_upsampler.config._activation_function == upsampler.config._activation_function
|
||||
assert loaded_upsampler.config.architectures == upsampler.config.architectures
|
||||
|
||||
def test_save_and_load_model_with_precision():
|
||||
# Create a temporary directory to save the model
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
# Create configurations and build a base model
|
||||
config = AIIAConfig()
|
||||
ai_config = aiuNNConfig()
|
||||
base_model = AIIABase(config)
|
||||
upsampler = aiuNN(base_model, config=ai_config)
|
||||
|
||||
# Save the model
|
||||
save_path = os.path.join(tmpdirname, "model")
|
||||
upsampler.save(save_path)
|
||||
|
||||
# Load the model with precision 'bf16'
|
||||
loaded_upsampler = aiuNN.load(save_path, precision="bf16")
|
||||
|
||||
# Verify that the loaded model is the same as the original model
|
||||
assert isinstance(loaded_upsampler, aiuNN)
|
||||
assert loaded_upsampler.config.__dict__ == upsampler.config.__dict__
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_save_and_load_model()
|
||||
test_save_and_load_model_with_precision()
|
Loading…
Reference in New Issue