first class but load is still missing, not complete
Gitea Actions For AIIA / Explore-Gitea-Actions (push) Failing after 42s
Details
Gitea Actions For AIIA / Explore-Gitea-Actions (push) Failing after 42s
Details
This commit is contained in:
parent
cb7a3da8a4
commit
16f8de2175
|
@ -2,13 +2,14 @@ import os
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import warnings
|
||||
from aiia.model.Model import AIIA, AIIAConfig, AIIABase
|
||||
from aiia.model.Model import AIIAConfig, AIIABase
|
||||
from transformers import PreTrainedModel
|
||||
from .config import aiuNNConfig
|
||||
import warnings
|
||||
|
||||
|
||||
class aiuNN(AIIA):
|
||||
def __init__(self, base_model: AIIA, config:aiuNNConfig):
|
||||
class aiuNN(PreTrainedModel):
|
||||
def __init__(self, base_model: PreTrainedModel, config:aiuNNConfig):
|
||||
super().__init__(base_model.config)
|
||||
self.base_model = base_model
|
||||
|
||||
|
@ -33,112 +34,6 @@ class aiuNN(AIIA):
|
|||
x = self.pixel_shuffle(x) # Rearrange channels into spatial dimensions
|
||||
return x
|
||||
|
||||
|
||||
@classmethod
|
||||
def load(cls, path, precision: str = None, **kwargs):
|
||||
"""
|
||||
Load a aiuNN model from disk with automatic detection of base model type.
|
||||
|
||||
Args:
|
||||
path (str): Directory containing the stored configuration and model parameters.
|
||||
precision (str, optional): Desired precision for the model's parameters.
|
||||
**kwargs: Additional keyword arguments to override configuration parameters.
|
||||
|
||||
Returns:
|
||||
An instance of aiuNN with loaded weights.
|
||||
"""
|
||||
# Load the configuration
|
||||
config = aiuNNConfig.load(path)
|
||||
|
||||
# Determine the device
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
# Load the state dictionary
|
||||
state_dict = torch.load(os.path.join(path, "model.pth"), map_location=device)
|
||||
|
||||
# Import all model types
|
||||
from aiia.model.Model import AIIABase, AIIABaseShared, AIIAExpert, AIIAmoe, AIIAchunked, AIIArecursive
|
||||
|
||||
# Helper function to detect base class type from key patterns
|
||||
def detect_base_class_type(keys_prefix):
|
||||
if any(f"{keys_prefix}.shared_layer" in key for key in state_dict.keys()):
|
||||
return AIIABaseShared
|
||||
else:
|
||||
return AIIABase
|
||||
|
||||
# Detect base model type
|
||||
base_model = None
|
||||
|
||||
# Check for AIIAmoe with multiple experts
|
||||
if any("base_model.experts" in key for key in state_dict.keys()):
|
||||
# Count the number of experts
|
||||
max_expert_idx = -1
|
||||
for key in state_dict.keys():
|
||||
if "base_model.experts." in key:
|
||||
try:
|
||||
parts = key.split("base_model.experts.")[1].split(".")
|
||||
expert_idx = int(parts[0])
|
||||
max_expert_idx = max(max_expert_idx, expert_idx)
|
||||
except (ValueError, IndexError):
|
||||
pass
|
||||
|
||||
if max_expert_idx >= 0:
|
||||
# Determine the type of base_cnn each expert is using
|
||||
base_class_for_experts = detect_base_class_type("base_model.experts.0.base_cnn")
|
||||
|
||||
# Create AIIAmoe with the detected expert count and base class
|
||||
base_model = AIIAmoe(config, num_experts=max_expert_idx+1, base_class=base_class_for_experts, **kwargs)
|
||||
|
||||
# Check for AIIAchunked or AIIArecursive
|
||||
elif any("base_model.chunked_cnn" in key for key in state_dict.keys()):
|
||||
if any("recursion_depth" in key for key in state_dict.keys()):
|
||||
# This is an AIIArecursive model
|
||||
base_class = detect_base_class_type("base_model.chunked_cnn.base_cnn")
|
||||
base_model = AIIArecursive(config, base_class=base_class, **kwargs)
|
||||
else:
|
||||
# This is an AIIAchunked model
|
||||
base_class = detect_base_class_type("base_model.chunked_cnn.base_cnn")
|
||||
base_model = AIIAchunked(config, base_class=base_class, **kwargs)
|
||||
|
||||
# Check for AIIAExpert
|
||||
elif any("base_model.base_cnn" in key for key in state_dict.keys()):
|
||||
# Determine which base class the expert is using
|
||||
base_class = detect_base_class_type("base_model.base_cnn")
|
||||
base_model = AIIAExpert(config, base_class=base_class, **kwargs)
|
||||
|
||||
# If none of the above, use AIIABase or AIIABaseShared directly
|
||||
else:
|
||||
base_class = detect_base_class_type("base_model")
|
||||
base_model = base_class(config, **kwargs)
|
||||
|
||||
# Create the aiuNN model with the detected base model
|
||||
model = cls(base_model, config=base_model.config)
|
||||
|
||||
# Handle precision conversion
|
||||
dtype = None
|
||||
if precision is not None:
|
||||
if precision.lower() == 'fp16':
|
||||
dtype = torch.float16
|
||||
elif precision.lower() == 'bf16':
|
||||
if device == 'cuda' and not torch.cuda.is_bf16_supported():
|
||||
warnings.warn("BF16 is not supported on this GPU. Falling back to FP16.")
|
||||
dtype = torch.float16
|
||||
else:
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
raise ValueError("Unsupported precision. Use 'fp16', 'bf16', or leave as None.")
|
||||
|
||||
if dtype is not None:
|
||||
for key, param in state_dict.items():
|
||||
if torch.is_tensor(param):
|
||||
state_dict[key] = param.to(dtype)
|
||||
|
||||
# Load the state dict
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from aiia import AIIABase, AIIAConfig
|
||||
# Create a configuration and build a base model.
|
||||
|
@ -149,7 +44,7 @@ if __name__ == "__main__":
|
|||
upsampler = aiuNN(base_model, config=ai_config)
|
||||
|
||||
# Save the model (both configuration and weights).
|
||||
upsampler.save("aiunn")
|
||||
upsampler.save_pretrained("aiunn")
|
||||
|
||||
# Now load using the overridden load method; this will load the complete model.
|
||||
upsampler_loaded = aiuNN.load("aiunn", precision="bf16")
|
||||
|
|
Loading…
Reference in New Issue