addded device gpu and fixed autocast
This commit is contained in:
parent
742a3e6f70
commit
81ceddff3b
|
@ -8,7 +8,7 @@ import csv
|
|||
from tqdm import tqdm
|
||||
import base64
|
||||
from torch.amp import autocast, GradScaler
|
||||
|
||||
import torch
|
||||
|
||||
class UpscaleDataset(Dataset):
|
||||
def __init__(self, parquet_files: list, transform=None):
|
||||
|
@ -87,7 +87,7 @@ pretrained_model_path = "/root/vision/AIIA/AIIA-base-512"
|
|||
|
||||
# Load the model using the AIIA.load class method (the implementation copied in your query)
|
||||
model = AIIABase.load(pretrained_model_path)
|
||||
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = model.to(device)
|
||||
from torch import nn, optim
|
||||
from torch.utils.data import DataLoader
|
||||
|
@ -126,7 +126,7 @@ for epoch in range(num_epochs):
|
|||
optimizer.zero_grad()
|
||||
|
||||
# Use automatic mixed precision context
|
||||
with autocast():
|
||||
with autocast(device_type=device):
|
||||
outputs = model(low_res)
|
||||
loss = criterion(outputs, high_res)
|
||||
|
||||
|
|
Loading…
Reference in New Issue