fiexd script

This commit is contained in:
Falko Victor Habel 2025-02-21 21:59:16 +01:00
parent 4af12873f2
commit 742a3e6f70
1 changed files with 21 additions and 16 deletions

View File

@ -7,13 +7,15 @@ from aiia import AIIABase
import csv
from tqdm import tqdm
import base64
from torch.amp import autocast, GradScaler
class UpscaleDataset(Dataset):
def __init__(self, parquet_files: list, transform=None):
combined_df = pd.DataFrame()
for parquet_file in parquet_files:
# Load data with chunking for memory efficiency
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(10000)
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(5000)
combined_df = pd.concat([combined_df, df], ignore_index=True)
# Validate data format
@ -80,8 +82,6 @@ transform = transforms.Compose([
])
import torch
# Replace with your actual pretrained model path
pretrained_model_path = "/root/vision/AIIA/AIIA-base-512"
@ -94,7 +94,7 @@ from torch.utils.data import DataLoader
# Create your dataset and dataloader
dataset = UpscaleDataset(["/root/training_data/vision-dataset/image_upscaler.parquet", "/root/training_data/vision-dataset/image_vec_upscaler.parquet"], transform=transform)
data_loader = DataLoader(dataset, batch_size=4, shuffle=True)
data_loader = DataLoader(dataset, batch_size=2, shuffle=True)
# Define a loss function and optimizer
criterion = nn.MSELoss()
@ -113,29 +113,34 @@ with open(csv_file, mode='a', newline='') as file:
if file.tell() == 0:
writer.writerow(['Epoch', 'Train Loss'])
# Create a gradient scaler (for scaling gradients when using AMP)
scaler = GradScaler()
for epoch in range(num_epochs):
epoch_loss = 0.0
# Wrap the data_loader with tqdm for progress tracking
data_loader_with_progress = tqdm(data_loader, desc=f"Epoch {epoch + 1}")
print(f"Epoche: {epoch}")
for low_res, high_res in data_loader_with_progress:
low_res = low_res.to(device)
high_res = high_res.to(device)
low_res = low_res.to(device, non_blocking=True)
high_res = high_res.to(device, non_blocking=True)
optimizer.zero_grad()
outputs = model(low_res)
loss = criterion(outputs, high_res)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
# Use automatic mixed precision context
with autocast():
outputs = model(low_res)
loss = criterion(outputs, high_res)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
avg_epoch_loss = epoch_loss / len(data_loader)
print(f"Epoch {epoch + 1}, Loss: {avg_epoch_loss}")
epoch_loss += loss.item()
print(f"Epoch {epoch + 1}, Loss: {epoch_loss}")
# Append the training loss to the CSV file
with open(csv_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([epoch + 1, avg_epoch_loss])
writer.writerow([epoch + 1, epoch_loss])
# Optionally, save the finetuned model to a new directory
finetuned_model_path = "aiuNN"