cpu training

This commit is contained in:
Falko Victor Habel 2025-02-21 21:54:33 +01:00
parent 992bc0eb7f
commit 4af12873f2
1 changed files with 3 additions and 3 deletions

View File

@ -13,7 +13,7 @@ class UpscaleDataset(Dataset):
combined_df = pd.DataFrame()
for parquet_file in parquet_files:
# Load data with chunking for memory efficiency
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(4000)
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(10000)
combined_df = pd.concat([combined_df, df], ignore_index=True)
# Validate data format
@ -87,14 +87,14 @@ pretrained_model_path = "/root/vision/AIIA/AIIA-base-512"
# Load the model using the AIIA.load class method (the implementation copied in your query)
model = AIIABase.load(pretrained_model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
from torch import nn, optim
from torch.utils.data import DataLoader
# Create your dataset and dataloader
dataset = UpscaleDataset(["/root/training_data/vision-dataset/image_upscaler.parquet", "/root/training_data/vision-dataset/image_vec_upscaler.parquet"], transform=transform)
data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
data_loader = DataLoader(dataset, batch_size=4, shuffle=True)
# Define a loss function and optimizer
criterion = nn.MSELoss()