first finetune try

This commit is contained in:
Falko Victor Habel 2025-01-29 23:06:49 +01:00
parent 914d002602
commit 4a60045320
1 changed files with 79 additions and 107 deletions

View File

@ -41,83 +41,10 @@ class ImageDataset(Dataset):
class TrainingBase:
def __init__(self,
model_name: str,
dataset_paths: Union[List[str], Dict[str, str]],
batch_size: int = 32,
learning_rate: float = 0.001,
num_workers: int = 4,
train_ratio: float = 0.8):
"""
Base class for training models with multiple dataset support
Args:
model_name (str): Name of the model to initialize
dataset_paths (Union[List[str], Dict[str, str]]): Paths to datasets (train and optional validation)
batch_size (int): Batch size for training
learning_rate (float): Learning rate for optimizer
num_workers (int): Number of workers for data loading
train_ratio (float): Ratio of data to use for training (rest goes to validation)
"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.batch_size = batch_size
self.num_workers = num_workers
# Initialize datasets and loaders
self.dataset_paths = dataset_paths
self._initialize_datasets()
# Initialize model and training parameters
self.model_name = model_name
self.learning_rate = learning_rate
self._initialize_model()
def _initialize_datasets(self):
"""Helper method to initialize datasets"""
raise NotImplementedError("This method should be implemented in child classes")
def _initialize_model(self):
"""Helper method to initialize model architecture"""
raise NotImplementedError("This method should be implemented in child classes")
def train(self, num_epochs: int = 10):
"""Train the model for specified number of epochs"""
self.model.to(self.device)
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
# Train phase
self._train_epoch()
# Validation phase
self._validate_epoch()
# Save best model based on validation loss
if self.current_val_loss < self.best_val_loss:
self.save_model()
def _train_epoch(self):
"""Train model for one epoch"""
raise NotImplementedError("This method should be implemented in child classes")
def _validate_epoch(self):
"""Validate model performance"""
raise NotImplementedError("This method should be implemented in child classes")
def save_model(self):
"""Save current best model"""
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'best_val_loss': self.best_val_loss
}, f"{self.model_name}_best.pth")
class Finetuner(TrainingBase):
class ModelTrainer:
def __init__(self,
model_name: str = "AIIA-Base-512",
dataset_paths: Union[List[str], Dict[str, str]] = None,
dataset_paths: List[str] = None,
batch_size: int = 32,
learning_rate: float = 0.001,
num_workers: int = 4,
@ -126,25 +53,42 @@ class Finetuner(TrainingBase):
Specialized trainer for image super resolution tasks
Args:
Same as TrainingBase
model_name (str): Name of the model to initialize
dataset_paths (List[str]): Paths to datasets
batch_size (int): Batch size for training
learning_rate (float): Learning rate for optimizer
num_workers (int): Number of workers for data loading
train_ratio (float): Ratio of data to use for training (rest goes to validation)
"""
super().__init__(model_name, dataset_paths, batch_size, learning_rate, num_workers, train_ratio)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.batch_size = batch_size
self.num_workers = num_workers
self.dataset_paths = dataset_paths
self.model_name = model_name
self.learning_rate = learning_rate
self.train_ratio = train_ratio
# Initialize datasets and loaders
self._initialize_datasets()
# Initialize model and training parameters
self._initialize_model()
def _initialize_datasets(self):
"""Initialize image datasets"""
# Load dataframes from parquet files
if isinstance(self.dataset_paths, dict):
df_train = pd.read_parquet(self.dataset_paths['train'])
df_val = pd.read_parquet(self.dataset_paths['val']) if 'val' in self.dataset_paths else None
elif isinstance(self.dataset_paths, list):
"""
Helper method to initialize datasets
"""
# Read training data based on input format
if isinstance(self.dataset_paths, list):
df_train = pd.concat([pd.read_parquet(path) for path in self.dataset_paths], ignore_index=True)
df_val = None
else:
raise ValueError("Invalid dataset_paths format")
raise ValueError("Invalid dataset_paths format. Must be a list or dictionary.")
# Split into train and validation sets if needed
if df_val is None:
df_train, df_val = train_test_split(df_train, test_size=1 - self.train_ratio, random_state=42)
df_train, df_val = train_test_split(
df_train,
test_size=1 - self.train_ratio,
random_state=42
)
# Define preprocessing transforms
self.transform = transforms.Compose([
@ -168,10 +112,12 @@ class Finetuner(TrainingBase):
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers
)
) if df_val is not None else None
def _initialize_model(self):
"""Initialize and modify the super resolution model"""
"""
Helper method to initialize model architecture and training parameters
"""
# Load base model
self.model = AIIABase.load(self.model_name)
@ -181,9 +127,10 @@ class Finetuner(TrainingBase):
# Add upscaling layer
hidden_size = self.model.config.hidden_size
kernel_size = self.model.config.kernel_size
self.model.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(hidden_size, 3, kernel_size=3, padding=1)
nn.Conv2d(hidden_size, 3, kernel_size=kernel_size, padding=1)
)
# Initialize optimizer and loss function
@ -195,14 +142,36 @@ class Finetuner(TrainingBase):
self.best_val_loss = float('inf')
def train(self, num_epochs: int = 10):
"""
Train the model for specified number of epochs
"""
self.model.to(self.device)
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
# Train phase
self._train_epoch()
# Validation phase
if self.val_loader is not None:
self._validate_epoch()
# Save best model based on validation loss
if self.val_loader is not None and self.current_val_loss < self.best_val_loss:
self.model.save("aiuNN-base")
def _train_epoch(self):
"""Train model for one epoch"""
"""
Train model for one epoch
"""
self.model.train()
running_loss = 0.0
for batch in self.train_loader:
low_res = batch['low_res'].to(self.device)
high_res = batch['high_res'].to(self.device)
low_res = batch['low_ress'].to(self.device)
high_res = batch['high_ress'].to(self.device)
# Forward pass
features = self.model.cnn(low_res)
@ -221,14 +190,16 @@ class Finetuner(TrainingBase):
print(f"Train Loss: {epoch_loss:.4f}")
def _validate_epoch(self):
"""Validate model performance"""
"""
Validate model performance
"""
self.model.eval()
val_loss = 0.0
val_oss = 0.0
with torch.no_grad():
for batch in self.val_loader:
low_res = batch['low_res'].to(self.device)
high_res = batch['high_res'].to(self.device)
low_res = batch['low_ress'].to(self.device)
high_res = batch['high_ress'].to(self.device)
features = self.model.cnn(low_res)
outputs = self.model.upsample(features)
@ -236,24 +207,25 @@ class Finetuner(TrainingBase):
loss = self.criterion(outputs, high_res)
val_loss += loss.item()
avg_val_loss = val_loss / len(self.val_loader)
avg_val_loss = val_loss / len(self.val_loader) if self.val_loader else 0
print(f"Validation Loss: {avg_val_loss:.4f}")
# Update best model
if avg_val_loss < self.best_val_loss:
self.best_val_loss = avg_val_loss
def __repr__(self):
return f"Model ({self.model_name}, batch_size={self.batch_size})"
# Example usage:
if __name__ == "__main__":
finetuner = Finetuner(
train_parquet_path="/root/training_data/vision-dataset/image_upscaler.parquet",
val_parquet_path="/root/training_data/vision-dataset/image_vec_upscaler.parquet",
trainer = ModelTrainer(
model_name="/root/vision/AIIA/AIIA-base-512/",
dataset_paths=[
"/root/training_data/vision-dataset/image_upscaler.parquet",
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
],
batch_size=2,
learning_rate=0.001
)
finetuner.train_model(num_epochs=10)
trainer.train(num__epochs=3)