added new aiiun script with first draft for pip project

This commit is contained in:
Falko Victor Habel 2025-01-29 22:30:57 +01:00
parent 71da7ed2f1
commit 914d002602
6 changed files with 337 additions and 99 deletions

14
pyproject.toml Normal file
View File

@ -0,0 +1,14 @@
[build-system]
requires = ["setuptools>=45", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "aiunn"
version = "0.1.0"
description = "A brief description of your package"
readme = "README.md"
requires-python = ">=3.7"
license = {file = "LICENSE"}
authors = [
{name = "Your Name", email = "your.email@example.com"},
]

5
requirements.txt Normal file
View File

@ -0,0 +1,5 @@
torch
aiia
pillow
torchvision
sklearn

25
setup.py Normal file
View File

@ -0,0 +1,25 @@
from setuptools import setup, find_packages
setup(
name="aiunn",
version="0.1.0",
packages=find_packages(where="src"),
package_dir={"": "src"},
install_requires=[
line.strip()
for line in open("requirements.txt")
if line.strip() and not line.startswith("#")
],
author="Falko Habel",
author_email="falko.habel@gmx.de",
description="Finetuner for image upscaling using AIIA",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
url="https://github.com/yourusername/aiunn",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.7",
)

View File

@ -0,0 +1,6 @@
from .finetune import *
from .inference import UpScaler
__version__ = "0.1.0"

View File

@ -7,138 +7,253 @@ from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from aiia.model import AIIABase
from sklearn.model_selection import train_test_split
from typing import Dict, List, Union
# Step 1: Define Custom Dataset Class
class ImageDataset(Dataset):
def __init__(self, dataframe, transform=None):
self.dataframe = dataframe
self.transform = transform
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
row = self.dataframe.iloc[idx]
# Decode image_512 from bytes
img_bytes = row['image_512']
img_stream = io.BytesIO(img_bytes)
low_res_image = Image.open(img_stream).convert('RGB')
# Decode image_1024 from bytes
high_res_bytes = row['image_1024']
high_stream = io.BytesIO(high_res_bytes)
high_res_image = Image.open(high_stream).convert('RGB')
# Apply transformations if specified
if self.transform:
low_res_image = self.transform(low_res_image)
high_res_image = self.transform(high_res_image)
return {'low_res': low_res_image, 'high_res': high_res_image}
# Step 2: Load and Preprocess Data
# Read the dataset (assuming it's a DataFrame with columns 'image_512' and 'image_1024')
df1 = pd.read_parquet('/root/training_data/vision-dataset/image_upscaler.parquet')
df2 = pd.read_parquet('/root/training_data/vision-dataset/image_vec_upscaler.parquet')
# Combine the two datasets into one DataFrame
df = pd.concat([df1, df2], ignore_index=True)
# Split into training and validation sets
train_df, val_df = train_test_split(df, test_size=0.2, random_state=42)
# Define preprocessing transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
train_dataset = ImageDataset(train_df, transform=transform)
val_dataset = ImageDataset(val_df, transform=transform)
# Create DataLoaders
batch_size = 2
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
# Step 3: Load Pre-trained Model and Modify for Upscaling
model = AIIABase.load("AIIA-Base-512")
# Freeze original CNN layers to prevent catastrophic forgetting
for param in model.cnn.parameters():
param.requires_grad = False
# Add upsample module
hidden_size = model.config.hidden_size # Assuming this is defined in your model's config
model.upsample = torch.nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(hidden_size, 3, kernel_size=3, padding=1)
)
# Step 4: Define Loss Function and Optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) # Adjust learning rate as needed
# Alternatively, if you want to train only the new layers:
params_to_update = []
for name, param in model.named_parameters():
if 'upsample' in name:
params_to_update.append(param)
optimizer = torch.optim.Adam(params_to_update, lr=0.001)
# Step 5: Training Loop
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
best_val_loss = float('inf')
num_epochs = 10 # Adjust as needed
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for batch in train_loader:
low_res = batch['low_res'].to(device)
high_res = batch['high_res'].to(device)
class TrainingBase:
def __init__(self,
model_name: str,
dataset_paths: Union[List[str], Dict[str, str]],
batch_size: int = 32,
learning_rate: float = 0.001,
num_workers: int = 4,
train_ratio: float = 0.8):
"""
Base class for training models with multiple dataset support
# Forward pass
features = model.cnn(low_res)
outputs = model.upsample(features)
Args:
model_name (str): Name of the model to initialize
dataset_paths (Union[List[str], Dict[str, str]]): Paths to datasets (train and optional validation)
batch_size (int): Batch size for training
learning_rate (float): Learning rate for optimizer
num_workers (int): Number of workers for data loading
train_ratio (float): Ratio of data to use for training (rest goes to validation)
"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.batch_size = batch_size
self.num_workers = num_workers
loss = criterion(outputs, high_res)
# Initialize datasets and loaders
self.dataset_paths = dataset_paths
self._initialize_datasets()
# Backward pass and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Initialize model and training parameters
self.model_name = model_name
self.learning_rate = learning_rate
self._initialize_model()
running_loss += loss.item()
def _initialize_datasets(self):
"""Helper method to initialize datasets"""
raise NotImplementedError("This method should be implemented in child classes")
epoch_loss = running_loss / len(train_loader)
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}')
def _initialize_model(self):
"""Helper method to initialize model architecture"""
raise NotImplementedError("This method should be implemented in child classes")
# Validation Step
model.eval()
val_loss = 0.0
with torch.no_grad():
for batch in val_loader:
low_res = batch['low_res'].to(device)
high_res = batch['high_res'].to(device)
def train(self, num_epochs: int = 10):
"""Train the model for specified number of epochs"""
self.model.to(self.device)
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
features = model.cnn(low_res)
outputs = model.upsample(features)
# Train phase
self._train_epoch()
loss = criterion(outputs, high_res)
val_loss += loss.item()
print(f"Validation Loss: {val_loss:.4f}")
# Validation phase
self._validate_epoch()
# Save best model based on validation loss
if self.current_val_loss < self.best_val_loss:
self.save_model()
if val_loss < best_val_loss:
best_val_loss = val_loss
model.save("AIIA-base-512-upscaler")
print("Best model saved!")
def _train_epoch(self):
"""Train model for one epoch"""
raise NotImplementedError("This method should be implemented in child classes")
def _validate_epoch(self):
"""Validate model performance"""
raise NotImplementedError("This method should be implemented in child classes")
def save_model(self):
"""Save current best model"""
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'best_val_loss': self.best_val_loss
}, f"{self.model_name}_best.pth")
class Finetuner(TrainingBase):
def __init__(self,
model_name: str = "AIIA-Base-512",
dataset_paths: Union[List[str], Dict[str, str]] = None,
batch_size: int = 32,
learning_rate: float = 0.001,
num_workers: int = 4,
train_ratio: float = 0.8):
"""
Specialized trainer for image super resolution tasks
Args:
Same as TrainingBase
"""
super().__init__(model_name, dataset_paths, batch_size, learning_rate, num_workers, train_ratio)
def _initialize_datasets(self):
"""Initialize image datasets"""
# Load dataframes from parquet files
if isinstance(self.dataset_paths, dict):
df_train = pd.read_parquet(self.dataset_paths['train'])
df_val = pd.read_parquet(self.dataset_paths['val']) if 'val' in self.dataset_paths else None
elif isinstance(self.dataset_paths, list):
df_train = pd.concat([pd.read_parquet(path) for path in self.dataset_paths], ignore_index=True)
df_val = None
else:
raise ValueError("Invalid dataset_paths format")
# Split into train and validation sets if needed
if df_val is None:
df_train, df_val = train_test_split(df_train, test_size=1 - self.train_ratio, random_state=42)
# Define preprocessing transforms
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Create datasets and dataloaders
self.train_dataset = ImageDataset(df_train, transform=self.transform)
self.val_dataset = ImageDataset(df_val, transform=self.transform)
self.train_loader = DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers
)
self.val_loader = DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers
)
def _initialize_model(self):
"""Initialize and modify the super resolution model"""
# Load base model
self.model = AIIABase.load(self.model_name)
# Freeze CNN layers
for param in self.model.cnn.parameters():
param.requires_grad = False
# Add upscaling layer
hidden_size = self.model.config.hidden_size
self.model.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(hidden_size, 3, kernel_size=3, padding=1)
)
# Initialize optimizer and loss function
self.criterion = nn.MSELoss()
self.optimizer = torch.optim.Adam(
[param for param in self.model.parameters() if 'upsample' in str(param)],
lr=self.learning_rate
)
self.best_val_loss = float('inf')
def _train_epoch(self):
"""Train model for one epoch"""
self.model.train()
running_loss = 0.0
for batch in self.train_loader:
low_res = batch['low_res'].to(self.device)
high_res = batch['high_res'].to(self.device)
# Forward pass
features = self.model.cnn(low_res)
outputs = self.model.upsample(features)
loss = self.criterion(outputs, high_res)
# Backward pass and optimize
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
running_loss += loss.item()
epoch_loss = running_loss / len(self.train_loader)
print(f"Train Loss: {epoch_loss:.4f}")
def _validate_epoch(self):
"""Validate model performance"""
self.model.eval()
val_loss = 0.0
with torch.no_grad():
for batch in self.val_loader:
low_res = batch['low_res'].to(self.device)
high_res = batch['high_res'].to(self.device)
features = self.model.cnn(low_res)
outputs = self.model.upsample(features)
loss = self.criterion(outputs, high_res)
val_loss += loss.item()
avg_val_loss = val_loss / len(self.val_loader)
print(f"Validation Loss: {avg_val_loss:.4f}")
# Update best model
if avg_val_loss < self.best_val_loss:
self.best_val_loss = avg_val_loss
def __repr__(self):
return f"Model ({self.model_name}, batch_size={self.batch_size})"
# Example usage:
if __name__ == "__main__":
finetuner = Finetuner(
train_parquet_path="/root/training_data/vision-dataset/image_upscaler.parquet",
val_parquet_path="/root/training_data/vision-dataset/image_vec_upscaler.parquet",
batch_size=2,
learning_rate=0.001
)
finetuner.train_model(num_epochs=10)

73
src/aiunn/inference.py Normal file
View File

@ -0,0 +1,73 @@
import torch
from PIL import Image
import torchvision.transforms as T
from torch.nn import functional as F
from aiia.model import AIIABase
class UpScaler:
def __init__(self, model_path="AIIA-base-512-upscaler", device="cuda"):
self.device = torch.device(device)
self.model = AIIABase.load(model_path).to(self.device)
self.model.eval()
# Preprocessing transforms
self.preprocess = T.Compose([
T.Lambda(lambda img: self._pad_to_square(img)),
T.Resize(512),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def _pad_to_square(self, pil_img):
"""Pad image to square while maintaining aspect ratio"""
w, h = pil_img.size
max_side = max(w, h)
hp = (max_side - w) // 2
vp = (max_side - h) // 2
padding = (hp, vp, max_side - w - hp, max_side - h - vp)
return T.functional.pad(pil_img, padding, 0, 'constant')
def _remove_padding(self, tensor, original_size):
"""Remove padding added during preprocessing"""
_, _, h, w = tensor.shape
orig_w, orig_h = original_size
# Calculate scale factor
scale = 512 / max(orig_w, orig_h)
new_w = int(orig_w * scale)
new_h = int(orig_h * scale)
# Calculate padding offsets
pad_w = (512 - new_w) // 2
pad_h = (512 - new_h) // 2
# Remove padding
unpad = tensor[:, :, pad_h:pad_h+new_h, pad_w:pad_w+new_w]
# Resize to target 2x resolution
return F.interpolate(unpad, size=(orig_h*2, orig_w*2), mode='bilinear', align_corners=False)
def upscale(self, input_image):
# Preprocess
original_size = input_image.size
input_tensor = self.preprocess(input_image).unsqueeze(0).to(self.device)
# Inference
with torch.no_grad():
features = self.model.cnn(input_tensor)
output = self.model.upsample(features)
# Postprocess
output = self._remove_padding(output, original_size)
# Convert to PIL Image
output = output.squeeze(0).cpu().detach()
output = (output * 0.5 + 0.5).clamp(0, 1)
return T.functional.to_pil_image(output)
# Usage example
if __name__ == "__main__":
upscaler = UpScaler()
input_image = Image.open("input.jpg")
output_image = upscaler.upscale(input_image)
output_image.save("output_2x.jpg")