updated tests to match new inference na tf supported model
Gitea Actions For AIIA / Explore-Gitea-Actions (push) Has been cancelled
Details
Gitea Actions For AIIA / Explore-Gitea-Actions (push) Has been cancelled
Details
This commit is contained in:
parent
ac3fabd55f
commit
391a03baed
|
@ -21,9 +21,8 @@ def real_model(tmp_path):
|
||||||
base_model = AIIABase(config)
|
base_model = AIIABase(config)
|
||||||
|
|
||||||
# Make sure aiuNN is properly configured with all required attributes
|
# Make sure aiuNN is properly configured with all required attributes
|
||||||
upsampler = aiuNN(base_model, config=ai_config)
|
upsampler = aiuNN(config=ai_config)
|
||||||
# Ensure the upsample attribute is properly set if needed
|
upsampler.load_base_model(base_model)
|
||||||
# upsampler.upsample = ... # Add any necessary initialization
|
|
||||||
|
|
||||||
# Save the model and config to temporary directory
|
# Save the model and config to temporary directory
|
||||||
save_path = str(model_dir / "save")
|
save_path = str(model_dir / "save")
|
||||||
|
@ -40,10 +39,10 @@ def real_model(tmp_path):
|
||||||
json.dump(config_data, f)
|
json.dump(config_data, f)
|
||||||
|
|
||||||
# Save model
|
# Save model
|
||||||
upsampler.save(save_path)
|
upsampler.save_pretrained(save_path)
|
||||||
|
|
||||||
# Load model in inference mode
|
# Load model in inference mode
|
||||||
inference_model = aiuNNInference(model_path=save_path, precision='fp16', device='cpu')
|
inference_model = aiuNNInference(model_path=save_path, device='cpu')
|
||||||
return inference_model
|
return inference_model
|
||||||
|
|
||||||
|
|
||||||
|
@ -88,12 +87,3 @@ def test_convert_to_binary(inference):
|
||||||
result = inference.convert_to_binary(test_image)
|
result = inference.convert_to_binary(test_image)
|
||||||
assert isinstance(result, bytes)
|
assert isinstance(result, bytes)
|
||||||
assert len(result) > 0
|
assert len(result) > 0
|
||||||
|
|
||||||
def test_process_batch(inference):
|
|
||||||
# Create test images
|
|
||||||
test_array = np.zeros((100, 100, 3), dtype=np.uint8)
|
|
||||||
test_images = [Image.fromarray(test_array) for _ in range(2)]
|
|
||||||
|
|
||||||
results = inference.process_batch(test_images)
|
|
||||||
assert len(results) == 2
|
|
||||||
assert all(isinstance(img, Image.Image) for img in results)
|
|
|
@ -10,39 +10,21 @@ def test_save_and_load_model():
|
||||||
config = AIIAConfig()
|
config = AIIAConfig()
|
||||||
ai_config = aiuNNConfig()
|
ai_config = aiuNNConfig()
|
||||||
base_model = AIIABase(config)
|
base_model = AIIABase(config)
|
||||||
upsampler = aiuNN(base_model, config=ai_config)
|
upsampler = aiuNN(config=ai_config)
|
||||||
|
upsampler.load_base_model(base_model)
|
||||||
# Save the model
|
# Save the model
|
||||||
save_path = os.path.join(tmpdirname, "model")
|
save_path = os.path.join(tmpdirname, "model")
|
||||||
upsampler.save(save_path)
|
upsampler.save_pretrained(save_path)
|
||||||
|
|
||||||
# Load the model
|
# Load the model
|
||||||
loaded_upsampler = aiuNN.load(save_path)
|
loaded_upsampler = aiuNN.from_pretrained(save_path)
|
||||||
|
|
||||||
# Verify that the loaded model is the same as the original model
|
# Verify that the loaded model is the same as the original model
|
||||||
assert isinstance(loaded_upsampler, aiuNN)
|
assert isinstance(loaded_upsampler, aiuNN)
|
||||||
assert loaded_upsampler.config.__dict__ == upsampler.config.__dict__
|
assert loaded_upsampler.config.hidden_size == upsampler.config.hidden_size
|
||||||
|
assert loaded_upsampler.config._activation_function == upsampler.config._activation_function
|
||||||
|
assert loaded_upsampler.config.architectures == upsampler.config.architectures
|
||||||
|
|
||||||
def test_save_and_load_model_with_precision():
|
|
||||||
# Create a temporary directory to save the model
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
||||||
# Create configurations and build a base model
|
|
||||||
config = AIIAConfig()
|
|
||||||
ai_config = aiuNNConfig()
|
|
||||||
base_model = AIIABase(config)
|
|
||||||
upsampler = aiuNN(base_model, config=ai_config)
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
save_path = os.path.join(tmpdirname, "model")
|
|
||||||
upsampler.save(save_path)
|
|
||||||
|
|
||||||
# Load the model with precision 'bf16'
|
|
||||||
loaded_upsampler = aiuNN.load(save_path, precision="bf16")
|
|
||||||
|
|
||||||
# Verify that the loaded model is the same as the original model
|
|
||||||
assert isinstance(loaded_upsampler, aiuNN)
|
|
||||||
assert loaded_upsampler.config.__dict__ == upsampler.config.__dict__
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test_save_and_load_model()
|
test_save_and_load_model()
|
||||||
test_save_and_load_model_with_precision()
|
|
Loading…
Reference in New Issue