diff --git a/tests/inference/test_inference.py b/tests/inference/test_inference.py index 39dea9a..5583d75 100644 --- a/tests/inference/test_inference.py +++ b/tests/inference/test_inference.py @@ -21,9 +21,8 @@ def real_model(tmp_path): base_model = AIIABase(config) # Make sure aiuNN is properly configured with all required attributes - upsampler = aiuNN(base_model, config=ai_config) - # Ensure the upsample attribute is properly set if needed - # upsampler.upsample = ... # Add any necessary initialization + upsampler = aiuNN(config=ai_config) + upsampler.load_base_model(base_model) # Save the model and config to temporary directory save_path = str(model_dir / "save") @@ -40,10 +39,10 @@ def real_model(tmp_path): json.dump(config_data, f) # Save model - upsampler.save(save_path) + upsampler.save_pretrained(save_path) # Load model in inference mode - inference_model = aiuNNInference(model_path=save_path, precision='fp16', device='cpu') + inference_model = aiuNNInference(model_path=save_path, device='cpu') return inference_model @@ -88,12 +87,3 @@ def test_convert_to_binary(inference): result = inference.convert_to_binary(test_image) assert isinstance(result, bytes) assert len(result) > 0 - -def test_process_batch(inference): - # Create test images - test_array = np.zeros((100, 100, 3), dtype=np.uint8) - test_images = [Image.fromarray(test_array) for _ in range(2)] - - results = inference.process_batch(test_images) - assert len(results) == 2 - assert all(isinstance(img, Image.Image) for img in results) \ No newline at end of file diff --git a/tests/upsampler/test_aiunn.py b/tests/upsampler/test_aiunn.py index aae0813..cdf11bc 100644 --- a/tests/upsampler/test_aiunn.py +++ b/tests/upsampler/test_aiunn.py @@ -10,39 +10,21 @@ def test_save_and_load_model(): config = AIIAConfig() ai_config = aiuNNConfig() base_model = AIIABase(config) - upsampler = aiuNN(base_model, config=ai_config) - + upsampler = aiuNN(config=ai_config) + upsampler.load_base_model(base_model) # Save the model save_path = os.path.join(tmpdirname, "model") - upsampler.save(save_path) + upsampler.save_pretrained(save_path) # Load the model - loaded_upsampler = aiuNN.load(save_path) + loaded_upsampler = aiuNN.from_pretrained(save_path) # Verify that the loaded model is the same as the original model assert isinstance(loaded_upsampler, aiuNN) - assert loaded_upsampler.config.__dict__ == upsampler.config.__dict__ + assert loaded_upsampler.config.hidden_size == upsampler.config.hidden_size + assert loaded_upsampler.config._activation_function == upsampler.config._activation_function + assert loaded_upsampler.config.architectures == upsampler.config.architectures -def test_save_and_load_model_with_precision(): - # Create a temporary directory to save the model - with tempfile.TemporaryDirectory() as tmpdirname: - # Create configurations and build a base model - config = AIIAConfig() - ai_config = aiuNNConfig() - base_model = AIIABase(config) - upsampler = aiuNN(base_model, config=ai_config) - - # Save the model - save_path = os.path.join(tmpdirname, "model") - upsampler.save(save_path) - - # Load the model with precision 'bf16' - loaded_upsampler = aiuNN.load(save_path, precision="bf16") - - # Verify that the loaded model is the same as the original model - assert isinstance(loaded_upsampler, aiuNN) - assert loaded_upsampler.config.__dict__ == upsampler.config.__dict__ if __name__ == "__main__": test_save_and_load_model() - test_save_and_load_model_with_precision() \ No newline at end of file