saving 100px in pretraining #20
|
@ -177,7 +177,7 @@ class AIIADataset(torch.utils.data.Dataset):
|
|||
self.items = items
|
||||
self.pretraining = pretraining
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Resize((410, 410)),
|
||||
transforms.Resize((400, 400)),
|
||||
transforms.ToTensor()
|
||||
])
|
||||
|
||||
|
@ -193,7 +193,7 @@ class AIIADataset(torch.utils.data.Dataset):
|
|||
raise ValueError(f"Invalid image at index {idx}")
|
||||
|
||||
image = self.transform(image)
|
||||
if image.shape != (3, 410, 410):
|
||||
if image.shape != (3, 400, 400):
|
||||
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||
|
||||
if task == 'denoise':
|
||||
|
@ -215,7 +215,7 @@ class AIIADataset(torch.utils.data.Dataset):
|
|||
if not isinstance(image, Image.Image):
|
||||
raise ValueError(f"Invalid image at index {idx}")
|
||||
image = self.transform(image)
|
||||
if image.shape != (3, 410, 410):
|
||||
if image.shape != (3, 400, 400):
|
||||
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||
return image, label
|
||||
else:
|
||||
|
@ -223,6 +223,6 @@ class AIIADataset(torch.utils.data.Dataset):
|
|||
image = self.transform(item)
|
||||
else:
|
||||
image = self.transform(item[0])
|
||||
if image.shape != (3, 410, 410):
|
||||
if image.shape != (3, 400, 400):
|
||||
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||
return image
|
||||
|
|
Loading…
Reference in New Issue