Merge pull request 'new_ui' (#15) from new_ui into develop

Reviewed-on: Berufsschule/Veracity_AI#15
This commit is contained in:
Falko Victor Habel 2024-10-22 09:25:20 +00:00
commit f832779fc3
3 changed files with 62 additions and 74 deletions

View File

@ -12,7 +12,7 @@ class ArticleRater:
"model": "mistral-nemo:12b-instruct-2407-q8_0",
"headers": self.headers,
"system": """Ein Mashine Learning Model hat einen Text bewertet, ob es sich um FakeNews handelt oder um Reale News.
Erkläre in 1-3 Sätzen warum dieses Modell zu dieser Entscheidung. Beginne die Antwort IMMER mit den Resultaten und Konfidenzen des Models.
Erkläre in 1-2 Sätzen warum dieses Modell zu dieser Entscheidung.
DU SOLLST KEINE ÜBERSCHRIFTEN oder ähnliches ERKLÄREN. Du erhählst einen TEXT und sollst erklären wie das RESULTAT zustande kam"""
}

View File

@ -7,12 +7,7 @@ from utils.database.database import FakeNewsChecker
from models.provider import Provider
from collections import Counter
from Ai.llm import ArticleRater
BAD_WORDS = ["FAKE", "SATIRE", "Fake", "fake", "fake news", "Fake News", "FakeNews"]
GOOD_WORDS = ["REAL", "real ", "Real", "Reale News", "reale", "reale News", "realen", "Real News"]
BAD_COLOR = "#ff8080"
GOOD_COLOR = "#80ff8f"
WORDS = BAD_WORDS + GOOD_WORDS
from Ai.Token import get_token
class MainFrameController:
@ -47,63 +42,36 @@ class MainFrameController:
return text_data
def press_check_button(self):
self.frame.result_label.configure(text="", fg_color="#333333")
self.frame.confidence_label.configure(text="", fg_color="#333333")
text_data = self.get_text_data()
if not text_data.text.strip():
return
text_data = self._predict(text_data)
self._add_to_db(text_data)
self.frame.output_textbox.configure(state="normal")
self.frame.output_textbox.delete("0.0", "end")
response_stream = self.rater.get_response(text_data.text, text_data.result, float(f"{text_data.confidence * 100:.2f}"))
confidence = text_data.confidence * 100
self.frame.confidence_label.configure(text=f"{confidence:.2f}%")
highlight_buffer = deque(maxlen=5)
result_color = "green" if text_data.result == "REAL" else "red"
self.frame.result_label.configure(text=text_data.result, fg_color=result_color)
for chunk in response_stream:
# Display the chunk immediately
self.frame.output_textbox.insert("end", chunk)
self.frame.output_textbox.see("end")
self.frame.update_idletasks()
confidence_color = "green" if confidence > 80 else ("orange" if confidence > 50 else "red")
self.frame.confidence_label.configure(fg_color=confidence_color)
if get_token().strip():
response_stream = self.rater.get_response(text_data.text, text_data.result, confidence)
# Add to highlight buffer
highlight_buffer.append(chunk)
for chunk in response_stream:
self.frame.output_textbox.insert("end", chunk)
self.frame.output_textbox.see("end")
self.frame.update_idletasks()
# Process highlighting when buffer is full
if len(highlight_buffer) == 5:
self._process_highlighting(highlight_buffer)
# Process any remaining chunks in the buffer
if highlight_buffer:
self._process_highlighting(highlight_buffer)
self.frame.output_textbox.configure(state="disabled")
self.update_provider_list()
def _process_highlighting(self, highlight_buffer):
start_index = self.frame.output_textbox.index(f"end-{sum(len(c) for c in highlight_buffer)}c")
end_index = self.frame.output_textbox.index("end")
self._highlight_words(start_index, end_index)
# Keep overlap of 2 chunks
highlight_buffer = deque(list(highlight_buffer)[-3:], maxlen=5)
def _highlight_words(self, start_index, end_index):
content = self.frame.output_textbox.get(start_index, end_index)
for word in WORDS:
start = 0
while True:
pos = content.find(word, start)
if pos == -1:
break
word_start = f"{start_index}+{pos}c"
word_end = f"{word_start}+{len(word)}c"
tag_name = f"{word.lower()}_color"
self.frame.output_textbox.tag_add(tag_name, word_start, word_end)
if word in BAD_WORDS:
self.frame.output_textbox.tag_config(tag_name, foreground=BAD_COLOR)
elif word in GOOD_WORDS:
self.frame.output_textbox.tag_config(tag_name, foreground=GOOD_COLOR)
start = pos + len(word)
def _predict(self, text_data: TextData) -> TextData:
"""
Make a prediction using the VeraMind model.

View File

@ -1,44 +1,64 @@
from typing import Any
import customtkinter as ctk
class MainFrame(ctk.CTkFrame):
class MainFrame(ctk.CTkFrame):
def __init__(self, master: Any, **kwargs):
super().__init__(master, **kwargs)
self.controller = None
# Konfiguriere das Hauptframe, um sich zu dehnen
# Configure the main frame to stretch
self.grid_rowconfigure(0, weight=1)
self.grid_columnconfigure(0, weight=1) # Linke Spalte soll sich dehnen
self.grid_columnconfigure(1, weight=0) # Mittlere Spalte (Button) soll sich nicht dehnen
self.grid_columnconfigure(2, weight=1) # Rechte Spalte soll sich dehnen
self.grid_columnconfigure(0, weight=1) # Left column should stretch
self.grid_columnconfigure(1, weight=0) # Middle column (button) should not stretch
self.grid_columnconfigure(2, weight=1) # Right column should stretch
# Linkes Frame
# Left frame
self.frame1 = ctk.CTkFrame(self)
self.frame1.grid(row=0, column=0, sticky="nsew", padx=10, pady=10)
self.frame1.grid_rowconfigure(2, weight=1) # Lasse die Output-Textbox wachsen
self.frame1.grid_columnconfigure(0, weight=1) # Lasse frame1 horizontal wachsen
self.frame1.grid_rowconfigure(3, weight=1)
self.frame1.grid_columnconfigure(0, weight=1)
self.entry_url = ctk.CTkEntry(self.frame1, placeholder_text='Enter the article link', height=50)
self.entry_url.grid(row=0, column=0, padx=10, pady=10, sticky="ew")
self.entry_url.grid(row=0, column=0,columnspan=2, padx=10, pady=10, sticky="ew")
self.input_textbox = ctk.CTkTextbox(self.frame1, height=150)
self.input_textbox.grid(row=1, column=0, columnspan=2, padx=10, pady=10, sticky="nsew")
self.output_textbox = ctk.CTkTextbox(self.frame1, height=200, state="disabled")
self.output_textbox.grid(row=2, column=0, columnspan=2, padx=10, pady=10, sticky="nsew")
# Mittlerer Button
# Middle button
self.check_button = ctk.CTkButton(self.frame1, text="Check", width=60, height=50, command=self.check_button_event)
self.check_button.grid(row=0, column=1, padx=10, pady=10, sticky="w")
self.check_button.grid(row=0, column=2,columnspan=1, padx=10, pady=10, sticky="e")
# Rechte scrollbare Ansicht
# Input Checkbox
self.input_textbox = ctk.CTkTextbox(self.frame1, height=125)
self.input_textbox.grid(row=1, column=0,columnspan=3, padx=10, pady=10, sticky="nsew")
# Frame for Result and Confidence labels
self.label_frame = ctk.CTkFrame(self.frame1, fg_color="#333333")
self.label_frame.grid(row=2, column=0, columnspan=3, padx=10, pady=10, sticky="ew")
self.label_frame.grid_columnconfigure(0, weight=1)
self.label_frame.grid_columnconfigure(1, weight=1)
# Result label
self.result_label = ctk.CTkLabel(self.label_frame, text="", height=50, fg_color="#333333", corner_radius=5)
self.result_label.grid(row=0, column=0, padx=(0, 5), pady=0, sticky="ew")
# Confidence label
self.confidence_label = ctk.CTkLabel(self.label_frame, text="", height=50, fg_color="#333333", corner_radius=5)
self.confidence_label.grid(row=0, column=1, padx=(5, 0), pady=0, sticky="ew")
# Ensure equal width for both labels
self.label_frame.grid_columnconfigure(0, weight=1, minsize=200)
self.label_frame.grid_columnconfigure(1, weight=1, minsize=200)
self.output_textbox = ctk.CTkTextbox(self.frame1, height=175, state="disabled")
self.output_textbox.grid(row=3, column=0, columnspan=3, padx=10, pady=10, sticky="nsew")
# Right scrollable view
self.scrollview = ctk.CTkScrollableFrame(self)
self.scrollview.grid(row=0, column=2, padx=10, pady=10, sticky="nsew")
# Überschrift hinzufügen
# Add header
self.header = ctk.CTkLabel(self.scrollview, text="Leaderboard", font=("Arial", 24, "bold"))
self.header.pack(pady=10, padx=10, anchor="w")
# Container für Provider-Einträge
# Container for provider entries
self.provider_container = ctk.CTkFrame(self.scrollview)
self.provider_container.pack(fill="both", expand=True)