llm optional gemacht
This commit is contained in:
parent
7a1aae3d45
commit
69fb3eb406
|
@ -7,12 +7,7 @@ from utils.database.database import FakeNewsChecker
|
|||
from models.provider import Provider
|
||||
from collections import Counter
|
||||
from Ai.llm import ArticleRater
|
||||
|
||||
BAD_WORDS = ["FAKE", "SATIRE", "Fake", "fake", "fake news", "Fake News", "FakeNews"]
|
||||
GOOD_WORDS = ["REAL", "real ", "Real", "Reale News", "reale", "reale News", "realen", "Real News"]
|
||||
BAD_COLOR = "#ff8080"
|
||||
GOOD_COLOR = "#80ff8f"
|
||||
WORDS = BAD_WORDS + GOOD_WORDS
|
||||
from Ai.Token import get_token
|
||||
|
||||
|
||||
class MainFrameController:
|
||||
|
@ -47,63 +42,36 @@ class MainFrameController:
|
|||
return text_data
|
||||
|
||||
def press_check_button(self):
|
||||
self.frame.result_label.configure(text="", fg_color="#333333")
|
||||
self.frame.confidence_label.configure(text="", fg_color="#333333")
|
||||
text_data = self.get_text_data()
|
||||
if not text_data.text.strip():
|
||||
return
|
||||
|
||||
text_data = self._predict(text_data)
|
||||
self._add_to_db(text_data)
|
||||
|
||||
self.frame.output_textbox.configure(state="normal")
|
||||
self.frame.output_textbox.delete("0.0", "end")
|
||||
|
||||
response_stream = self.rater.get_response(text_data.text, text_data.result, float(f"{text_data.confidence * 100:.2f}"))
|
||||
confidence = text_data.confidence * 100
|
||||
self.frame.confidence_label.configure(text=f"{confidence:.2f}%")
|
||||
|
||||
highlight_buffer = deque(maxlen=5)
|
||||
result_color = "green" if text_data.result == "REAL" else "red"
|
||||
self.frame.result_label.configure(text=text_data.result, fg_color=result_color)
|
||||
|
||||
for chunk in response_stream:
|
||||
# Display the chunk immediately
|
||||
self.frame.output_textbox.insert("end", chunk)
|
||||
self.frame.output_textbox.see("end")
|
||||
self.frame.update_idletasks()
|
||||
confidence_color = "green" if confidence > 80 else ("orange" if confidence > 50 else "red")
|
||||
self.frame.confidence_label.configure(fg_color=confidence_color)
|
||||
|
||||
if get_token().strip():
|
||||
response_stream = self.rater.get_response(text_data.text, text_data.result, confidence)
|
||||
|
||||
# Add to highlight buffer
|
||||
highlight_buffer.append(chunk)
|
||||
for chunk in response_stream:
|
||||
self.frame.output_textbox.insert("end", chunk)
|
||||
self.frame.output_textbox.see("end")
|
||||
self.frame.update_idletasks()
|
||||
|
||||
# Process highlighting when buffer is full
|
||||
if len(highlight_buffer) == 5:
|
||||
self._process_highlighting(highlight_buffer)
|
||||
|
||||
# Process any remaining chunks in the buffer
|
||||
if highlight_buffer:
|
||||
self._process_highlighting(highlight_buffer)
|
||||
|
||||
self.frame.output_textbox.configure(state="disabled")
|
||||
self.update_provider_list()
|
||||
|
||||
def _process_highlighting(self, highlight_buffer):
|
||||
start_index = self.frame.output_textbox.index(f"end-{sum(len(c) for c in highlight_buffer)}c")
|
||||
end_index = self.frame.output_textbox.index("end")
|
||||
self._highlight_words(start_index, end_index)
|
||||
|
||||
# Keep overlap of 2 chunks
|
||||
highlight_buffer = deque(list(highlight_buffer)[-3:], maxlen=5)
|
||||
|
||||
def _highlight_words(self, start_index, end_index):
|
||||
content = self.frame.output_textbox.get(start_index, end_index)
|
||||
|
||||
for word in WORDS:
|
||||
start = 0
|
||||
while True:
|
||||
pos = content.find(word, start)
|
||||
if pos == -1:
|
||||
break
|
||||
word_start = f"{start_index}+{pos}c"
|
||||
word_end = f"{word_start}+{len(word)}c"
|
||||
tag_name = f"{word.lower()}_color"
|
||||
self.frame.output_textbox.tag_add(tag_name, word_start, word_end)
|
||||
if word in BAD_WORDS:
|
||||
self.frame.output_textbox.tag_config(tag_name, foreground=BAD_COLOR)
|
||||
elif word in GOOD_WORDS:
|
||||
self.frame.output_textbox.tag_config(tag_name, foreground=GOOD_COLOR)
|
||||
start = pos + len(word)
|
||||
|
||||
def _predict(self, text_data: TextData) -> TextData:
|
||||
"""
|
||||
Make a prediction using the VeraMind model.
|
||||
|
|
Loading…
Reference in New Issue