Compare commits
3 Commits
6a9f4ce203
...
0d1153503f
Author | SHA1 | Date |
---|---|---|
Falko Victor Habel | 0d1153503f | |
Falko Victor Habel | 8d24965c67 | |
Falko Victor Habel | 4dc355b2cb |
|
@ -5,7 +5,11 @@
|
|||
"embeddings_url": "http://localhost:11434",
|
||||
"base_model": "mistral",
|
||||
"embeddings_model": "mxbai-embed-large",
|
||||
"base_header": "",
|
||||
"embeddings_header": ""
|
||||
"base_header": {
|
||||
"": ""
|
||||
},
|
||||
"embeddings_header": {
|
||||
"": ""
|
||||
}
|
||||
}
|
||||
}
|
24
project.py
24
project.py
|
@ -31,14 +31,9 @@ def main():
|
|||
elif config["mode"] == "terminal":
|
||||
handle_terminal(args)
|
||||
elif config["mode"] == "gui":
|
||||
try:
|
||||
config["ollamaConfig"]["base_header"] = json.loads(config["ollamaConfig"]["base_header"])
|
||||
config["ollamaConfig"]["embeddings_header"] = json.loads(config["ollamaConfig"]["embeddings_header"])
|
||||
except json.decoder.JSONDecodeError:
|
||||
"""can be ignored if no header needed"""
|
||||
pass
|
||||
# start gui
|
||||
try:
|
||||
print(config["ollamaConfig"]["embeddings_header"] )
|
||||
gui = ChatGUI(**config["ollamaConfig"])
|
||||
gui.mainloop()
|
||||
except TypeError:
|
||||
|
@ -58,11 +53,14 @@ def configure():
|
|||
embeddings_url = input("Enter embeddings URL (standard: http://localhost:11434): ") or "http://localhost:11434"
|
||||
base_model = input("Enter base model (standard: 'mistral'): ") or "mistral"
|
||||
embeddings_model = input("Enter embeddings model (standard: 'mxbai-embed-large'): ") or "mxbai-embed-large"
|
||||
base_header = input("Authentication for base model (standard: empty): ") or ""
|
||||
embeddings_header = input("Authentication for embeddings model (standard: empty): ") or ""
|
||||
base_header_key = input("Authentication Key for base model (standard: empty): ") or ""
|
||||
base_header_value = input("Authentication Value for base model (standard: empty): ") or ""
|
||||
embeddings_header_key = input("Authentication Key for embeddings model (standard: empty): ") or ""
|
||||
embeddings_header_value = input("Authentication Value for embeddings model (standard: empty): ") or ""
|
||||
|
||||
return {"mode": mode, "ollamaConfig":{ "base_url": base_llm_url, "embeddings_url": embeddings_url, "base_model": base_model,
|
||||
"embeddings_model": embeddings_model, "base_header": base_header, "embeddings_header": embeddings_header}}
|
||||
return {"mode": mode, "ollamaConfig":{"base_url": base_llm_url, "embeddings_url": embeddings_url, "base_model": base_model,
|
||||
"embeddings_model": embeddings_model, "base_header":{base_header_key: base_header_value}
|
||||
,"embeddings_header" :{embeddings_header_key: embeddings_header_value}}}
|
||||
|
||||
def read_config():
|
||||
if not os.path.exists(CONFIG_FILE):
|
||||
|
@ -88,12 +86,6 @@ def handle_change_mode(args):
|
|||
|
||||
def handle_terminal(args):
|
||||
config = read_config()
|
||||
try:
|
||||
config["ollamaConfig"]["base_header"] = json.loads(config["ollamaConfig"]["base_header"])
|
||||
config["ollamaConfig"]["embeddings_header"] = json.loads(config["ollamaConfig"]["embeddings_header"])
|
||||
except json.decoder.JSONDecodeError:
|
||||
"""can be ignored if no header needed"""
|
||||
pass
|
||||
|
||||
if args.p:
|
||||
try:
|
||||
|
|
|
@ -4,7 +4,10 @@ class OllamaChatBot:
|
|||
def __init__(self, base_url, model, headers):
|
||||
self.base_url = base_url
|
||||
self.model = model
|
||||
self.headers = headers
|
||||
if self.is_empty(headers):
|
||||
self.headers = ""
|
||||
else:
|
||||
self.headers = headers
|
||||
self.messanges = []
|
||||
|
||||
if headers is None:
|
||||
|
@ -18,6 +21,10 @@ class OllamaChatBot:
|
|||
model=self.model,
|
||||
headers = self.headers
|
||||
)
|
||||
|
||||
def is_empty(self, dictionary):
|
||||
return len(dictionary) == 1 and list(dictionary.keys())[0] == '' and list(dictionary.values())[0] == ''
|
||||
|
||||
|
||||
|
||||
def get_request(self, prompt):
|
||||
|
@ -27,4 +34,7 @@ class OllamaChatBot:
|
|||
messanges = messanges[:5]
|
||||
else:
|
||||
messanges = self.messanges
|
||||
return self.ollama.invoke(messanges).content
|
||||
try:
|
||||
return self.ollama.invoke(messanges).content
|
||||
except ValueError:
|
||||
return "An unexpected Error occuried"
|
||||
|
|
|
@ -25,19 +25,22 @@ class ChatGUI(CTk.CTk):
|
|||
self.start_message_processing_thread()
|
||||
|
||||
def get_response_from_ollama(self, prompt, context):
|
||||
if context != "":
|
||||
if self.context != context:
|
||||
checks = self.rag.receive_data(file_path=context)
|
||||
if checks[0]:
|
||||
return checks[1]
|
||||
else:
|
||||
self.context = context
|
||||
self.rag.init_ollama()
|
||||
|
||||
return self.rag.get_request(prompt=prompt)
|
||||
try:
|
||||
if context != "":
|
||||
if self.context != context:
|
||||
checks = self.rag.receive_data(file_path=context)
|
||||
if checks[0]:
|
||||
return checks[1]
|
||||
else:
|
||||
self.context = context
|
||||
self.rag.init_ollama()
|
||||
|
||||
return self.rag.get_request(prompt=prompt)
|
||||
|
||||
else:
|
||||
return self.bot.get_request(prompt=prompt)
|
||||
else:
|
||||
return self.bot.get_request(prompt=prompt)
|
||||
except ValueError:
|
||||
return "An unexpected Error occuried"
|
||||
|
||||
def on_send(self, event=None):
|
||||
message = self.entry_bar.get().strip()
|
||||
|
@ -65,7 +68,8 @@ class ChatGUI(CTk.CTk):
|
|||
|
||||
def select_file(self):
|
||||
file_path = filedialog.askopenfilename()
|
||||
self.file_entry.insert(1, file_path)
|
||||
self.file_entry.delete(0, "end")
|
||||
self.file_entry.insert(0, file_path)
|
||||
|
||||
def create_widgets(self):
|
||||
self.geometry("900x600")
|
||||
|
@ -109,6 +113,8 @@ class ChatGUI(CTk.CTk):
|
|||
for message in self.history:
|
||||
message.pack_forget()
|
||||
self.history = []
|
||||
self.bot.messanges = []
|
||||
self.rag.init_ollama()
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -6,8 +6,6 @@ from langchain_community.embeddings import OllamaEmbeddings
|
|||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_community.chat_models import ChatOllama
|
||||
from langchain.chains import RetrievalQA
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
|
||||
|
||||
|
@ -21,8 +19,15 @@ class Rag:
|
|||
|
||||
self.base_url_llm = base_url_llm
|
||||
self.base_url_embed = base_url_embed
|
||||
self.base_header = base_header
|
||||
self.embeddings_header = embeddings_header
|
||||
|
||||
if self.is_empty(base_header):
|
||||
self.base_header = ""
|
||||
else:
|
||||
self.base_header = base_header
|
||||
if self.is_empty(embeddings_header):
|
||||
self.embeddings_header = ""
|
||||
else:
|
||||
self.embeddings_header = embeddings_header
|
||||
self.embeddings = OllamaEmbeddings(model=embeddings, headers=self.embeddings_header, base_url=self.base_url_embed)
|
||||
|
||||
def init_ollama(self):
|
||||
|
@ -49,8 +54,6 @@ class Rag:
|
|||
case "html": # Corrected the typo in the variable name
|
||||
loader = UnstructuredHTMLLoader(file_path=file_path)
|
||||
data = loader.load()
|
||||
case "json":
|
||||
data = json.loads(Path(file_path).read_text())
|
||||
case "md":
|
||||
loader = UnstructuredMarkdownLoader(file_path=file_path)
|
||||
data = loader.load()
|
||||
|
@ -67,17 +70,26 @@ class Rag:
|
|||
return True
|
||||
|
||||
|
||||
def is_empty(self, dictionary):
|
||||
return len(dictionary) == 1 and list(dictionary.keys())[0] == '' and list(dictionary.values())[0] == ''
|
||||
|
||||
|
||||
|
||||
def receive_data(self, file_path):
|
||||
if self.get_file(file_path):
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=250, chunk_overlap=0)
|
||||
splitted = text_splitter.split_documents(self.data)
|
||||
self.retriever = Chroma.from_documents(documents=splitted, embedding=self.embeddings).as_retriever()
|
||||
return (False, "Success")
|
||||
else:
|
||||
return (True, f"'{file_path}' unsupported, read documentation for more information")
|
||||
|
||||
try:
|
||||
if self.get_file(file_path):
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=250, chunk_overlap=0)
|
||||
splitted = text_splitter.split_documents(self.data)
|
||||
self.retriever = Chroma.from_documents(documents=splitted, embedding=self.embeddings).as_retriever()
|
||||
return (False, "Success")
|
||||
else:
|
||||
return (True, f"'{file_path}' unsupported, read documentation for more information")
|
||||
except (ValueError, AttributeError):
|
||||
return (True, "An unexpected Error occuried")
|
||||
def get_request(self, prompt):
|
||||
qachain=RetrievalQA.from_chain_type(self.chat_ollama, retriever=self.retriever)
|
||||
return qachain.invoke({"query": prompt})["result"]
|
||||
try:
|
||||
return qachain.invoke({"query": prompt})["result"]
|
||||
except ValueError:
|
||||
return (True, "An unexpected Error occuried")
|
||||
|
|
@ -10,17 +10,9 @@ CONFIG_FILE = 'tests/config.json'
|
|||
def setup_config():
|
||||
"""Fixture to create a dummy config file before each test and remove it after."""
|
||||
# Create the config file
|
||||
initial_config = {
|
||||
"mode": "terminal",
|
||||
"ollamaConfig": {
|
||||
"base_url": "http://localhost:11434",
|
||||
"embeddings_url": "http://localhost:11434",
|
||||
"base_model": "mistral",
|
||||
"embeddings_model": "mxbai-embed-large",
|
||||
"base_header": "",
|
||||
"embeddings_header": ""
|
||||
}
|
||||
}
|
||||
initial_config = {"mode": "terminal",
|
||||
"ollamaConfig":{"base_url": 'https://ai.fabelous.app/v1/ollama/generic', "embeddings_url": 'http://localhost:11434', "base_model": 'mistral',
|
||||
"embeddings_model": 'mxbai-embed-large', "base_header":{'': ''},"" :{'': ''}}}
|
||||
with open(CONFIG_FILE, 'w') as f:
|
||||
json.dump(initial_config, f)
|
||||
|
||||
|
@ -38,8 +30,10 @@ def test_configure(monkeypatch):
|
|||
'http://localhost:11434', # Embeddings URL
|
||||
'mistral', # Base model
|
||||
'mxbai-embed-large', # Embeddings model
|
||||
'{"Authorization": "Token xzy"}', # Base header for authentication
|
||||
'{"Authorization": "Token xzy"}', # Embeddings header for authentication
|
||||
'Authorization', # Base Model authentication key
|
||||
'Token xzy', # Base Model authentication value
|
||||
'Authorization', # Embeddings key for authentication
|
||||
'Token xzy'# Embeddings value for authentication
|
||||
])
|
||||
|
||||
monkeypatch.setattr('builtins.input', lambda _: next(inputs))
|
||||
|
@ -47,17 +41,11 @@ def test_configure(monkeypatch):
|
|||
config = configure()
|
||||
|
||||
# Expected configurations based on the inputs
|
||||
expected_config = {
|
||||
"mode": "terminal",
|
||||
"ollamaConfig": {
|
||||
"base_url": "https://ai.fabelous.app/v1/ollama/generic",
|
||||
"embeddings_url": "http://localhost:11434",
|
||||
"base_model": "mistral",
|
||||
"embeddings_model": "mxbai-embed-large",
|
||||
"base_header": '{"Authorization": "Token xzy"}',
|
||||
"embeddings_header": '{"Authorization": "Token xzy"}'
|
||||
}
|
||||
}
|
||||
expected_config = {"mode": "terminal",
|
||||
"ollamaConfig":{"base_url": 'https://ai.fabelous.app/v1/ollama/generic', "embeddings_url": 'http://localhost:11434', "base_model": 'mistral',
|
||||
"embeddings_model": 'mxbai-embed-large', "base_header":{'Authorization': 'Token xzy'}
|
||||
,"embeddings_header" :{'Authorization': 'Token xzy'}}}
|
||||
|
||||
|
||||
assert config['mode'] == expected_config['mode'], "Mode configuration does not match."
|
||||
assert config['ollamaConfig'] == expected_config['ollamaConfig'], "OllamaConfig does not match."
|
||||
|
|
Loading…
Reference in New Issue