aiuNN/src/aiunn/upsampler/aiunn.py

75 lines
2.8 KiB
Python

import torch.nn as nn
from aiia.model.Model import AIIAConfig, AIIABase
from transformers import PreTrainedModel
from .config import aiuNNConfig
class aiuNN(PreTrainedModel):
config_class = aiuNNConfig
def __init__(self, config: aiuNNConfig, base_model: PreTrainedModel = None):
super().__init__(config)
self.config = config
# Copy base layers into aiuNN for self-containment and portability
if base_model is not None:
if hasattr(base_model, 'cnn'):
self.base_layers = nn.Sequential(*[layer for layer in base_model.cnn])
elif hasattr(base_model, 'shared_layer') and hasattr(base_model, 'unique_layers'):
layers = [base_model.shared_layer, base_model.activation, base_model.max_pool]
for ul in base_model.unique_layers:
layers.extend([ul, base_model.activation, base_model.max_pool])
self.base_layers = nn.Sequential(*layers)
else:
self.base_layers = self._build_base_layers_from_config(config)
else:
self.base_layers = self._build_base_layers_from_config(config)
# Bilinear upsampling head
self.upsample = nn.Upsample(
scale_factor=self.config.upsample_scale,
mode='bilinear',
align_corners=False
)
self.final_conv = nn.Conv2d(
in_channels=self.config.hidden_size,
out_channels=self.config.num_channels,
kernel_size=3,
padding=1
)
def _build_base_layers_from_config(self, config):
layers = []
in_channels = config.num_channels
for _ in range(config.num_hidden_layers):
layers.extend([
nn.Conv2d(in_channels, config.hidden_size,
kernel_size=config.kernel_size, padding=1),
getattr(nn, config.activation_function)(),
nn.MaxPool2d(kernel_size=1, stride=1)
])
in_channels = config.hidden_size
return nn.Sequential(*layers)
def forward(self, x):
x = self.base_layers(x)
x = self.upsample(x)
x = self.final_conv(x)
return x
if __name__ == "__main__":
from aiia import AIIABase, AIIAConfig
# Create a configuration and build a base model.
config = AIIAConfig()
ai_config = aiuNNConfig()
base_model = AIIABase(config)
# Instantiate Upsampler from the base model (works correctly).
upsampler = aiuNN(config=ai_config, base_model=base_model)
# Save the model (both configuration and weights).
upsampler.save_pretrained("aiunn")
# Now load using the overridden load method; this will load the complete model.
upsampler_loaded = aiuNN.from_pretrained("aiunn")
print("Updated configuration:", upsampler_loaded.config.__dict__)