develop #4
|
@ -10,8 +10,10 @@ import io
|
|||
import base64
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
from torch.utils.data import random_split
|
||||
from torch.utils.data import random_split, DataLoader
|
||||
from aiia import AIIA, AIIAConfig, AIIABase, AIIABaseShared, AIIAmoe, AIIAchunked, AIIArecursive
|
||||
from torch.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
|
||||
class aiuNNDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, parquet_path):
|
||||
|
@ -72,7 +74,7 @@ def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
|||
val_size = len(combined_dataset) - train_size
|
||||
train_dataset, val_dataset = random_split(combined_dataset, [train_size, val_size])
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
|
@ -81,7 +83,7 @@ def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
|||
persistent_workers=True
|
||||
)
|
||||
|
||||
val_loader = torch.utils.data.DataLoader(
|
||||
val_loader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
|
@ -91,39 +93,33 @@ def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
|||
)
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
# Limit VRAM usage to 95% of available memory (reducing risk of overflow)
|
||||
if device.type == 'cuda':
|
||||
torch.cuda.set_per_process_memory_fraction(0.95, device=device)
|
||||
|
||||
model = model.to(device)
|
||||
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=model.config.learning_rate)
|
||||
|
||||
# Initialize GradScaler for AMP
|
||||
scaler = torch.amp.GradScaler()
|
||||
|
||||
scaler = GradScaler()
|
||||
best_val_loss = float('inf')
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
train_loss = 0.0
|
||||
|
||||
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/Training"):
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
low_res = batch['low_res'].to(device)
|
||||
high_res = batch['high_res'].to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
# Use AMP autocast for lower precision computations
|
||||
with torch.cuda.amp.autocast():
|
||||
with autocast():
|
||||
outputs = model(low_res)
|
||||
loss = criterion(outputs, high_res)
|
||||
|
||||
# Scale the loss for backward pass
|
||||
scaler.scale(loss).backward()
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
|
||||
train_loss += loss.item()
|
||||
|
||||
avg_train_loss = train_loss / len(train_loader)
|
||||
|
@ -131,26 +127,21 @@ def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
|||
|
||||
model.eval()
|
||||
val_loss = 0.0
|
||||
|
||||
with torch.no_grad():
|
||||
for batch in tqdm(val_loader, desc="Validation"):
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
low_res = batch['low_res'].to(device)
|
||||
high_res = batch['high_res'].to(device)
|
||||
|
||||
with torch.amp.autocast():
|
||||
with autocast():
|
||||
outputs = model(low_res)
|
||||
loss = criterion(outputs, high_res)
|
||||
val_loss += loss.item()
|
||||
|
||||
avg_val_loss = val_loss / len(val_loader)
|
||||
print(f"Epoch {epoch+1}, Validation Loss: {avg_val_loss:.4f}")
|
||||
if avg_val_loss < best_val_loss:
|
||||
best_val_loss = avg_val_loss
|
||||
model.save("best_model")
|
||||
|
||||
return model
|
||||
|
||||
def main():
|
||||
|
|
Loading…
Reference in New Issue