develop #4
|
@ -40,7 +40,7 @@ class UpscaleDataset(Dataset):
|
||||||
def __init__(self, parquet_files: list, transform=None):
|
def __init__(self, parquet_files: list, transform=None):
|
||||||
combined_df = pd.DataFrame()
|
combined_df = pd.DataFrame()
|
||||||
for parquet_file in parquet_files:
|
for parquet_file in parquet_files:
|
||||||
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(500)
|
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(2500)
|
||||||
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
||||||
|
|
||||||
self.df = combined_df.apply(self._validate_row, axis=1)
|
self.df = combined_df.apply(self._validate_row, axis=1)
|
||||||
|
@ -97,7 +97,7 @@ pretrained_model_path = "/root/vision/AIIA/AIIA-base-512"
|
||||||
base_model = AIIABase.load(pretrained_model_path, precision="bf16")
|
base_model = AIIABase.load(pretrained_model_path, precision="bf16")
|
||||||
model = Upsampler(base_model)
|
model = Upsampler(base_model)
|
||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cpu")
|
||||||
# Move model to device using channels_last memory format.
|
# Move model to device using channels_last memory format.
|
||||||
model = model.to(device, memory_format=torch.channels_last)
|
model = model.to(device, memory_format=torch.channels_last)
|
||||||
|
|
||||||
|
@ -109,7 +109,7 @@ dataset = UpscaleDataset([
|
||||||
"/root/training_data/vision-dataset/image_upscaler.parquet",
|
"/root/training_data/vision-dataset/image_upscaler.parquet",
|
||||||
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
|
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
|
||||||
], transform=transform)
|
], transform=transform)
|
||||||
data_loader = DataLoader(dataset, batch_size=1, shuffle=True) # Consider adjusting num_workers if needed.
|
data_loader = DataLoader(dataset, batch_size=2, shuffle=True) # Consider adjusting num_workers if needed.
|
||||||
|
|
||||||
# Define loss function and optimizer.
|
# Define loss function and optimizer.
|
||||||
criterion = nn.MSELoss()
|
criterion = nn.MSELoss()
|
||||||
|
|
Loading…
Reference in New Issue