develop #4

Merged
Fabel merged 103 commits from develop into main 2025-03-01 21:47:17 +00:00
1 changed files with 20 additions and 1 deletions
Showing only changes of commit 36f9b30666 - Show all commits

View File

@ -4,6 +4,8 @@ from PIL import Image
from torch.utils.data import Dataset from torch.utils.data import Dataset
from torchvision import transforms from torchvision import transforms
from aiia import AIIA from aiia import AIIA
import csv
class UpscaleDataset(Dataset): class UpscaleDataset(Dataset):
def __init__(self, parquet_file, transform=None): def __init__(self, parquet_file, transform=None):
@ -54,6 +56,16 @@ optimizer = optim.Adam(model.parameters(), lr=1e-4)
num_epochs = 10 num_epochs = 10
model.train() # Set model in training mode model.train() # Set model in training mode
csv_file = 'losses.csv'
# Create or open the CSV file and write the header if it doesn't exist
with open(csv_file, mode='a', newline='') as file:
writer = csv.writer(file)
# Write the header only if the file is empty
if file.tell() == 0:
writer.writerow(['Epoch', 'Train Loss'])
for epoch in range(num_epochs): for epoch in range(num_epochs):
epoch_loss = 0.0 epoch_loss = 0.0
for low_res, high_res in data_loader: for low_res, high_res in data_loader:
@ -66,7 +78,14 @@ for epoch in range(num_epochs):
loss.backward() loss.backward()
optimizer.step() optimizer.step()
epoch_loss += loss.item() epoch_loss += loss.item()
print(f"Epoch {epoch + 1}, Loss: {epoch_loss / len(data_loader)}")
avg_epoch_loss = epoch_loss / len(data_loader)
print(f"Epoch {epoch + 1}, Loss: {avg_epoch_loss}")
# Append the training loss to the CSV file
with open(csv_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([epoch + 1, avg_epoch_loss])
# Optionally, save the finetuned model to a new directory # Optionally, save the finetuned model to a new directory
finetuned_model_path = "aiuNN" finetuned_model_path = "aiuNN"