corrected MOTrainer #27
|
@ -3,7 +3,7 @@ requires = ["setuptools>=45", "wheel"]
|
|||
build-backend = "setuptools.build_meta"
|
||||
[project]
|
||||
name = "aiunn"
|
||||
version = "0.4.0"
|
||||
version = "0.4.1"
|
||||
description = "Finetuner for image upscaling using AIIA"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10"
|
||||
|
|
2
setup.py
2
setup.py
|
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
|||
|
||||
setup(
|
||||
name="aiunn",
|
||||
version="0.4.0",
|
||||
version="0.4.1",
|
||||
packages=find_packages(where="src"),
|
||||
package_dir={"": "src"},
|
||||
install_requires=[
|
||||
|
|
|
@ -4,4 +4,4 @@ from .upsampler.aiunn import aiuNN
|
|||
from .upsampler.config import aiuNNConfig
|
||||
from .inference.inference import aiuNNInference
|
||||
|
||||
__version__ = "0.4.0"
|
||||
__version__ = "0.4.1"
|
|
@ -177,6 +177,7 @@ class MemoryOptimizedTrainer(aiuNNTrainer):
|
|||
|
||||
with autocast(device_type=self.device.type):
|
||||
outputs = self.model(low_res)
|
||||
outputs = outputs.clone()
|
||||
loss = self.criterion(outputs, high_res)
|
||||
|
||||
val_loss += loss.item()
|
||||
|
@ -252,10 +253,10 @@ class MemoryOptimizedTrainer(aiuNNTrainer):
|
|||
if hasattr(self, 'use_checkpointing') and self.use_checkpointing:
|
||||
low_res.requires_grad_()
|
||||
outputs = checkpoint(self.model, low_res)
|
||||
outputs = outputs.clone() # <-- Clone added here
|
||||
outputs = outputs.clone()
|
||||
else:
|
||||
outputs = self.model(low_res)
|
||||
outputs = outputs.clone() # <-- Clone added here
|
||||
outputs = outputs.clone()
|
||||
loss = self.criterion(outputs, high_res)
|
||||
|
||||
# Scale loss for gradient accumulation
|
||||
|
|
Loading…
Reference in New Issue