finetune_class #1

Merged
Fabel merged 96 commits from finetune_class into develop 2025-02-26 12:13:09 +00:00
1 changed files with 43 additions and 81 deletions
Showing only changes of commit 8fafbebe45 - Show all commits

View File

@ -8,23 +8,22 @@ from albumentations.pytorch import ToTensorV2
from PIL import Image, ImageFile
import io
import base64
import numpy as np
from torch import nn
# Import the model and config from your existing code
from torch.utils.data import random_split
from aiia import AIIA, AIIAConfig, AIIABase, AIIABaseShared, AIIAmoe, AIIAchunked, AIIArecursive
class aiuNNDataset(torch.utils.data.Dataset):
def __init__(self, parquet_path):
# Read the Parquet file
self.df = pd.read_parquet(parquet_path).head(1250)
self.df = pd.read_parquet(parquet_path, columns=['image_512', 'image_1024'])
# Data augmentation pipeline without Resize as it's redundant
self.augmentation = Compose([
RandomBrightnessContrast(),
RandomBrightnessContrast(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
Rotate(degrees=45),
GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
Normalize(mean=[0.5], std=[0.5]),
Rotate(limit=45, p=0.5),
GaussianBlur(blur_limit=(3, 7), p=0.5),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
ToTensorV2()
])
@ -33,92 +32,66 @@ class aiuNNDataset(torch.utils.data.Dataset):
def load_image(self, image_data):
try:
# Handle both bytes and base64 encoded strings
if isinstance(image_data, str):
# Decode base64 string to bytes
image_data = base64.b64decode(image_data)
# Verify data is valid before creating BytesIO
if not isinstance(image_data, bytes):
raise ValueError("Invalid image data format")
# Create image stream
image_stream = io.BytesIO(image_data)
# Enable loading of truncated images
ImageFile.LOAD_TRUNCATED_IMAGES = True
# Load and convert image to RGB
image = Image.open(image_stream).convert('RGB')
image_array = np.array(image)
# Create fresh copy for verify() since it modifies the image object
image_verify = image.copy()
# Verify image is valid
try:
image_verify.verify()
except Exception as e:
raise ValueError(f"Image verification failed: {str(e)}")
finally:
image_verify.close()
return image
return image_array
except Exception as e:
raise RuntimeError(f"Error loading image: {str(e)}")
finally:
# Ensure stream is closed
if 'image_stream' in locals():
image_stream.close()
def __getitem__(self, idx):
row = self.df.iloc[idx]
# Load images using the new method
low_res_image = self.load_image(row['image_512'])
high_res_image = self.load_image(row['image_1024'])
# Apply augmentation and normalization
augmented_low = self.augmentation(image=low_res_image)
low_res = augmented_low['image']
augmented_high = self.augmentation(image=high_res_image)
high_res = augmented_high['image']
return {
'low_res': low_res,
'high_res': high_res
'low_res': augmented_low['image'],
'high_res': augmented_high['image']
}
from torch.utils.data.dataset import ConcatDataset
def finetune_model(model: AIIA, datasets:list[str], batch_size=2, epochs=10):
# Load all datasets and concatenate them
def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
loaded_datasets = [aiuNNDataset(d) for d in datasets]
combined_dataset = ConcatDataset(loaded_datasets)
combined_dataset = torch.utils.data.ConcatDataset(loaded_datasets)
# Split into training and validation sets
train_dataset, val_dataset = combined_dataset.train_val_split()
train_size = int(0.8 * len(combined_dataset))
val_size = len(combined_dataset) - train_size
train_dataset, val_dataset = random_split(combined_dataset, [train_size, val_size])
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4
num_workers=4,
pin_memory=True,
persistent_workers=True
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4
num_workers=4,
pin_memory=True,
persistent_workers=True
)
# Set device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Define loss function and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=model.config.learning_rate)
@ -128,73 +101,62 @@ def finetune_model(model: AIIA, datasets:list[str], batch_size=2, epochs=10):
for epoch in range(epochs):
model.train()
train_loss = 0.0
for batch_idx, batch in enumerate(tqdm(train_loader)):
# Your training code here
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/Training"):
if torch.cuda.is_available():
torch.cuda.empty_cache()
low_res = batch['low_res'].to(device)
high_res = batch['high_res'].to(device)
# Forward pass
outputs = model(low_res)
# Calculate loss
loss = criterion(outputs, high_res.permute(0, 3, 1, 2)) # Adjust for channel dimensions
# Backward pass and optimize
optimizer.zero_grad()
outputs = model(low_res)
loss = criterion(outputs, high_res)
loss.backward()
optimizer.step()
train_loss += loss.item()
avg_train_loss = train_loss / len(train_loader)
print(f"Epoch {epoch+1}, Training Loss: {avg_train_loss:.4f}")
# Validation
model.eval()
val_loss = 0.0
with torch.no_grad():
for batch in tqdm(val_loader, desc="Validation"):
if torch.cuda.is_available():
torch.cuda.empty_cache()
low_res = batch['low_res'].to(device)
high_res = batch['high_res'].to(device)
outputs = model(low_res)
loss = criterion(outputs, high_res.permute(0, 3, 1, 2))
loss = criterion(outputs, high_res)
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
print(f"Epoch {epoch+1}, Validation Loss: {avg_val_loss:.4f}")
# Save best model
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
model.save("best_model")
torch.save(model.state_dict(), "best_model.pth")
return model
def main():
# Paths to your data
train_parquet_path = "/root/training_data/vision-dataset/image_upscaler.parquet"
val_parquet_path = "/root/training_data/vision-dataset/image_vec_upscaler.parquet"
# Load pretrained model
BATCH_SIZE = 1
model = AIIABase.load("/root/vision/AIIA/AIIA-base-512")
# Add final upsampling layer if needed (depending on your specific architecture)
if hasattr(model, 'chunked_'):
model.add_module('final_upsample', nn.Upsample(scale_factor=2, mode='bilinear'))
# Fine-tune
finetune_model(
model,
train_parquet_path,
val_parquet_path
model=model,
datasets=[
"/root/training_data/vision-dataset/image_upscaler.parquet",
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
],
batch_size=BATCH_SIZE
)
if __name__ == '__main__':