finetune_class #1
|
@ -12,13 +12,12 @@ import numpy as np
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.utils.data import random_split, DataLoader
|
from torch.utils.data import random_split, DataLoader
|
||||||
from aiia import AIIA, AIIAConfig, AIIABase, AIIABaseShared, AIIAmoe, AIIAchunked, AIIArecursive
|
from aiia import AIIA, AIIAConfig, AIIABase, AIIABaseShared, AIIAmoe, AIIAchunked, AIIArecursive
|
||||||
from torch.amp import autocast, GradScaler
|
from torch.cuda.amp import autocast, GradScaler
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
class aiuNNDataset(torch.utils.data.Dataset):
|
class aiuNNDataset(torch.utils.data.Dataset):
|
||||||
def __init__(self, parquet_path):
|
def __init__(self, parquet_path):
|
||||||
self.df = pd.read_parquet(parquet_path, columns=['image_512', 'image_1024']).head(2000)
|
self.df = pd.read_parquet(parquet_path, columns=['image_512', 'image_1024']).head(2000)
|
||||||
|
|
||||||
self.augmentation = Compose([
|
self.augmentation = Compose([
|
||||||
RandomBrightnessContrast(p=0.5),
|
RandomBrightnessContrast(p=0.5),
|
||||||
HorizontalFlip(p=0.5),
|
HorizontalFlip(p=0.5),
|
||||||
|
@ -36,16 +35,12 @@ class aiuNNDataset(torch.utils.data.Dataset):
|
||||||
try:
|
try:
|
||||||
if isinstance(image_data, str):
|
if isinstance(image_data, str):
|
||||||
image_data = base64.b64decode(image_data)
|
image_data = base64.b64decode(image_data)
|
||||||
|
|
||||||
if not isinstance(image_data, bytes):
|
if not isinstance(image_data, bytes):
|
||||||
raise ValueError("Invalid image data format")
|
raise ValueError("Invalid image data format")
|
||||||
|
|
||||||
image_stream = io.BytesIO(image_data)
|
image_stream = io.BytesIO(image_data)
|
||||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||||
|
|
||||||
image = Image.open(image_stream).convert('RGB')
|
image = Image.open(image_stream).convert('RGB')
|
||||||
image_array = np.array(image)
|
image_array = np.array(image)
|
||||||
|
|
||||||
return image_array
|
return image_array
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise RuntimeError(f"Error loading image: {str(e)}")
|
raise RuntimeError(f"Error loading image: {str(e)}")
|
||||||
|
@ -55,10 +50,8 @@ class aiuNNDataset(torch.utils.data.Dataset):
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
row = self.df.iloc[idx]
|
row = self.df.iloc[idx]
|
||||||
|
|
||||||
low_res_image = self.load_image(row['image_512'])
|
low_res_image = self.load_image(row['image_512'])
|
||||||
high_res_image = self.load_image(row['image_1024'])
|
high_res_image = self.load_image(row['image_1024'])
|
||||||
|
|
||||||
augmented_low = self.augmentation(image=low_res_image)
|
augmented_low = self.augmentation(image=low_res_image)
|
||||||
augmented_high = self.augmentation(image=high_res_image)
|
augmented_high = self.augmentation(image=high_res_image)
|
||||||
return {
|
return {
|
||||||
|
@ -66,10 +59,10 @@ class aiuNNDataset(torch.utils.data.Dataset):
|
||||||
'high_res': augmented_high['image']
|
'high_res': augmented_high['image']
|
||||||
}
|
}
|
||||||
|
|
||||||
def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
def finetune_model(model: AIIA, datasets: list[str], batch_size=1, epochs=10, accumulation_steps=8, use_checkpoint=False):
|
||||||
|
# Load and concatenate datasets.
|
||||||
loaded_datasets = [aiuNNDataset(d) for d in datasets]
|
loaded_datasets = [aiuNNDataset(d) for d in datasets]
|
||||||
combined_dataset = torch.utils.data.ConcatDataset(loaded_datasets)
|
combined_dataset = torch.utils.data.ConcatDataset(loaded_datasets)
|
||||||
|
|
||||||
train_size = int(0.8 * len(combined_dataset))
|
train_size = int(0.8 * len(combined_dataset))
|
||||||
val_size = len(combined_dataset) - train_size
|
val_size = len(combined_dataset) - train_size
|
||||||
train_dataset, val_dataset = random_split(combined_dataset, [train_size, val_size])
|
train_dataset, val_dataset = random_split(combined_dataset, [train_size, val_size])
|
||||||
|
@ -93,38 +86,57 @@ def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
||||||
)
|
)
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
# Limit VRAM usage to 95% of available memory (reducing risk of overflow)
|
|
||||||
if device.type == 'cuda':
|
if device.type == 'cuda':
|
||||||
torch.cuda.set_per_process_memory_fraction(0.95, device=device)
|
torch.cuda.set_per_process_memory_fraction(0.95, device=device)
|
||||||
|
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
|
||||||
criterion = nn.MSELoss()
|
criterion = nn.MSELoss()
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=model.config.learning_rate)
|
optimizer = torch.optim.Adam(model.parameters(), lr=model.config.learning_rate)
|
||||||
|
|
||||||
scaler = GradScaler()
|
scaler = GradScaler()
|
||||||
best_val_loss = float('inf')
|
best_val_loss = float('inf')
|
||||||
|
|
||||||
|
# Import checkpoint if gradient checkpointing is desired
|
||||||
|
from torch.utils.checkpoint import checkpoint
|
||||||
|
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
model.train()
|
model.train()
|
||||||
train_loss = 0.0
|
train_loss = 0.0
|
||||||
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/Training"):
|
optimizer.zero_grad()
|
||||||
|
# Gradient accumulation over several steps (effective batch size = accumulation_steps)
|
||||||
|
for i, batch in enumerate(tqdm(train_loader, desc=f"Epoch {epoch+1}/Training"), start=1):
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
low_res = batch['low_res'].to(device)
|
low_res = batch['low_res'].to(device)
|
||||||
high_res = batch['high_res'].to(device)
|
high_res = batch['high_res'].to(device)
|
||||||
optimizer.zero_grad()
|
|
||||||
with autocast():
|
with autocast():
|
||||||
|
if use_checkpoint:
|
||||||
|
# Wrap the forward pass with checkpointing to save memory.
|
||||||
|
outputs = checkpoint(lambda x: model(x), low_res)
|
||||||
|
else:
|
||||||
outputs = model(low_res)
|
outputs = model(low_res)
|
||||||
loss = criterion(outputs, high_res)
|
# Divide loss to average over accumulation steps.
|
||||||
|
loss = criterion(outputs, high_res) / accumulation_steps
|
||||||
|
|
||||||
scaler.scale(loss).backward()
|
scaler.scale(loss).backward()
|
||||||
|
train_loss += loss.item() * accumulation_steps # recover actual loss value
|
||||||
|
|
||||||
|
# Update the optimizer every accumulation_steps iterations.
|
||||||
|
if i % accumulation_steps == 0:
|
||||||
scaler.step(optimizer)
|
scaler.step(optimizer)
|
||||||
scaler.update()
|
scaler.update()
|
||||||
train_loss += loss.item()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# In case remaining gradients are present from an incomplete accumulation round.
|
||||||
|
if (i % accumulation_steps) != 0:
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
avg_train_loss = train_loss / len(train_loader)
|
avg_train_loss = train_loss / len(train_loader)
|
||||||
print(f"Epoch {epoch+1}, Training Loss: {avg_train_loss:.4f}")
|
print(f"Epoch {epoch+1}, Training Loss: {avg_train_loss:.4f}")
|
||||||
|
|
||||||
|
# Validation loop (without accumulation, using standard precision)
|
||||||
model.eval()
|
model.eval()
|
||||||
val_loss = 0.0
|
val_loss = 0.0
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
@ -139,15 +151,19 @@ def finetune_model(model: AIIA, datasets: list[str], batch_size=2, epochs=10):
|
||||||
val_loss += loss.item()
|
val_loss += loss.item()
|
||||||
avg_val_loss = val_loss / len(val_loader)
|
avg_val_loss = val_loss / len(val_loader)
|
||||||
print(f"Epoch {epoch+1}, Validation Loss: {avg_val_loss:.4f}")
|
print(f"Epoch {epoch+1}, Validation Loss: {avg_val_loss:.4f}")
|
||||||
|
|
||||||
if avg_val_loss < best_val_loss:
|
if avg_val_loss < best_val_loss:
|
||||||
best_val_loss = avg_val_loss
|
best_val_loss = avg_val_loss
|
||||||
model.save("best_model")
|
model.save("best_model")
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
BATCH_SIZE = 2
|
BATCH_SIZE = 1 # Use a batch size of 1.
|
||||||
model = AIIABase.load("/root/vision/AIIA/AIIA-base-512")
|
ACCUMULATION_STEPS = 8 # Accumulate gradients over 8 iterations for an effective batch size of 8.
|
||||||
|
USE_CHECKPOINT = False # Set to True to enable gradient checkpointing instead.
|
||||||
|
|
||||||
|
model = AIIABase.load("/root/vision/AIIA/AIIA-base-512")
|
||||||
if hasattr(model, 'chunked_'):
|
if hasattr(model, 'chunked_'):
|
||||||
model.add_module('final_upsample', nn.Upsample(scale_factor=2, mode='bilinear'))
|
model.add_module('final_upsample', nn.Upsample(scale_factor=2, mode='bilinear'))
|
||||||
|
|
||||||
|
@ -157,7 +173,10 @@ def main():
|
||||||
"/root/training_data/vision-dataset/image_upscaler.parquet",
|
"/root/training_data/vision-dataset/image_upscaler.parquet",
|
||||||
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
|
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
|
||||||
],
|
],
|
||||||
batch_size=BATCH_SIZE
|
batch_size=BATCH_SIZE,
|
||||||
|
epochs=10,
|
||||||
|
accumulation_steps=ACCUMULATION_STEPS,
|
||||||
|
use_checkpoint=USE_CHECKPOINT
|
||||||
)
|
)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue