finetune_class #1
|
@ -99,6 +99,8 @@ class ImageDataset(Dataset):
|
|||
if 'high_res_stream' in locals():
|
||||
high_res_stream.close()
|
||||
|
||||
|
||||
|
||||
class FineTuner:
|
||||
def __init__(self,
|
||||
model: AIIA,
|
||||
|
@ -127,7 +129,7 @@ class FineTuner:
|
|||
self.learning_rate = learning_rate
|
||||
self.train_ratio = train_ratio
|
||||
self.model = model
|
||||
self.output_dir = output_dir
|
||||
self.ouptut_dir = output_dir
|
||||
|
||||
# Create output directory if it doesn't exist
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
@ -150,6 +152,17 @@ class FineTuner:
|
|||
# Initialize training parameters
|
||||
self._initialize_training()
|
||||
|
||||
def _freeze_layers(self):
|
||||
"""Freeze all layers except the upsample layer"""
|
||||
try:
|
||||
# Try to freeze layers based on their names
|
||||
for name, param in self.model.named_parameters():
|
||||
if 'upsample' not in name:
|
||||
param.requires_grad = False
|
||||
except Exception as e:
|
||||
print(f"Warning: Couldn't freeze layers - {str(e)}")
|
||||
pass
|
||||
|
||||
def _initialize_datasets(self):
|
||||
"""
|
||||
Helper method to initialize datasets
|
||||
|
@ -159,15 +172,18 @@ class FineTuner:
|
|||
else:
|
||||
raise ValueError("Invalid dataset_paths format. Must be a list.")
|
||||
|
||||
# Split into train and validation sets
|
||||
df_train, df_val = train_test_split(
|
||||
df_train,
|
||||
test_size=1 - self.train_ratio,
|
||||
random_state=42
|
||||
)
|
||||
|
||||
# Define preprocessing transforms
|
||||
# Define preprocessing transforms with augmentation
|
||||
self.transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.RandomResizedCrop(256),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
])
|
||||
|
||||
|
@ -200,47 +216,67 @@ class FineTuner:
|
|||
"""
|
||||
with open(self.log_file, 'a') as f:
|
||||
f.write(f'{epoch},{train_loss:.6f},{val_loss:.6f},{self.best_val_loss:.6f}\n')
|
||||
|
||||
|
||||
|
||||
def _initialize_training(self):
|
||||
"""
|
||||
Helper method to initialize training parameters
|
||||
"""
|
||||
# Freeze CNN layers (if applicable)
|
||||
try:
|
||||
for param in self.model.cnn.parameters():
|
||||
param.requires_grad = False
|
||||
except AttributeError:
|
||||
pass # If model doesn't have a 'cnn' attribute, just continue
|
||||
# Freeze all layers except upsample layer
|
||||
self._freeze_layers()
|
||||
|
||||
# Add upscaling layer if not already present
|
||||
if not hasattr(self.model, 'upsample'):
|
||||
# Get existing configuration values or set defaults if necessary
|
||||
hidden_size = self.model.config.hidden_size
|
||||
kernel_size = self.model.config.kernel_size
|
||||
# Try to get existing configuration or set defaults
|
||||
try:
|
||||
hidden_size = self.model.config.hidden_size
|
||||
kernel_size = 3 # Use odd-sized kernel for better performance
|
||||
except AttributeError:
|
||||
# Fallback values if config isn't available
|
||||
hidden_size = 512
|
||||
kernel_size = 3
|
||||
|
||||
self.model.upsample = nn.Sequential(
|
||||
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
|
||||
nn.Conv2d(hidden_size, 3, kernel_size=kernel_size, padding=1)
|
||||
nn.ConvTranspose2d(hidden_size,
|
||||
hidden_size//2,
|
||||
kernel_size=kernel_size,
|
||||
stride=2,
|
||||
padding=1,
|
||||
output_padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.ConvTranspose2d(hidden_size//2,
|
||||
3,
|
||||
kernel_size=kernel_size,
|
||||
stride=2,
|
||||
padding=1,
|
||||
output_padding=1)
|
||||
)
|
||||
# Update the model's configuration with new parameters
|
||||
self.model.config.upsample_hidden_size = hidden_size
|
||||
self.model.config.upsample_kernel_size = kernel_size
|
||||
|
||||
# Initialize optimizer and loss function
|
||||
self.criterion = nn.MSELoss()
|
||||
# Initialize optimizer and scheduler
|
||||
params_to_optimize = [p for p in self.model.parameters() if p.requires_grad]
|
||||
|
||||
# Get parameters of the upsample layer for training
|
||||
params = [p for p in self.model.upsample.parameters() if p.requires_grad]
|
||||
if not params:
|
||||
raise ValueError("No parameters found in upsample layer to optimize")
|
||||
if not params_to_optimize:
|
||||
raise ValueError("No parameters found to optimize")
|
||||
|
||||
# Use Adam with weight decay for better regularization
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params,
|
||||
lr=self.learning_rate
|
||||
params_to_optimize,
|
||||
lr=self.learning_rate,
|
||||
weight_decay=1e-4 # Add L2 regularization
|
||||
)
|
||||
|
||||
self.best_val_loss = float('inf')
|
||||
# Reduce learning rate when validation loss plateaus
|
||||
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
self.optimizer,
|
||||
factor=0.1, # Multiply LR by this factor on plateau
|
||||
patience=3, # Number of epochs to wait before reducing LR
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Use a combination of L1 and L2 losses for better performance
|
||||
self.criterion = nn.L1Loss()
|
||||
self.mse_criterion = nn.MSELoss()
|
||||
|
||||
def _train_epoch(self):
|
||||
"""
|
||||
|
@ -255,18 +291,26 @@ class FineTuner:
|
|||
low_ress = batch['low_ress'].to(self.device)
|
||||
high_ress = batch['high_ress'].to(self.device)
|
||||
|
||||
# Forward pass
|
||||
features = self.model.cnn(low_ress) if hasattr(self.model, 'cnn') else self.model.extract_features(low_ress)
|
||||
try:
|
||||
# Try using CNN layer if available
|
||||
features = self.model.cnn(low_ress)
|
||||
except AttributeError:
|
||||
# Fallback to extract_features method
|
||||
features = self.model.extract_features(low_ress)
|
||||
|
||||
outputs = self.model.upsample(features)
|
||||
|
||||
loss = self.criterion(outputs, high_ress)
|
||||
# Calculate loss with different scaling for L1 and MSE components
|
||||
l1_loss = self.criterion(outputs, high_ress) * 0.5
|
||||
mse_loss = self.mse_criterion(outputs, high_ress) * 0.5
|
||||
total_loss = l1_loss + mse_loss
|
||||
|
||||
# Backward pass and optimize
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
total_loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
running_loss += total_loss.item()
|
||||
|
||||
epoch_loss = running_loss / len(self.train_loader)
|
||||
self.train_losses.append(epoch_loss)
|
||||
|
@ -287,11 +331,19 @@ class FineTuner:
|
|||
low_ress = batch['low_ress'].to(self.device)
|
||||
high_ress = batch['high_ress'].to(self.device)
|
||||
|
||||
features = self.model.cnn(low_ress) if hasattr(self.model, 'cnn') else self.model.extract_features(low_ress)
|
||||
try:
|
||||
features = self.model.cnn(low_ress)
|
||||
except AttributeError:
|
||||
features = self.model.extract_features(low_ress)
|
||||
|
||||
outputs = self.model.upsample(features)
|
||||
|
||||
loss = self.criterion(outputs, high_ress)
|
||||
val_loss += loss.item()
|
||||
# Calculate same loss combination
|
||||
l1_loss = self.criterion(outputs, high_ress) * 0.5
|
||||
mse_loss = self.mse_criterion(outputs, high_ress) * 0.5
|
||||
total_loss = l1_loss + mse_loss
|
||||
|
||||
val_loss += total_loss.item()
|
||||
|
||||
self.current_val_loss = val_loss / len(self.val_loader)
|
||||
self.val_losses.append(self.current_val_loss)
|
||||
|
@ -318,6 +370,9 @@ class FineTuner:
|
|||
if self.val_loader is not None:
|
||||
val_loss = self._validate_epoch()
|
||||
|
||||
# Update learning rate scheduler based on validation loss
|
||||
self.scheduler.step(val_loss)
|
||||
|
||||
# Log metrics
|
||||
self._log_metrics(epoch + 1, train_loss, val_loss)
|
||||
|
||||
|
@ -325,25 +380,28 @@ class FineTuner:
|
|||
if self.current_val_loss < self.best_val_loss:
|
||||
print(f"Validation loss improved from {self.best_val_loss:.4f} to {self.current_val_loss:.4f}")
|
||||
self.best_val_loss = self.current_val_loss
|
||||
model_save_path = os.path.join(self.output_dir, "aiuNN-finetuned")
|
||||
model_save_path = os.path.join(self.ouptut_dir, "aiuNN-optimized")
|
||||
self.model.save(model_save_path)
|
||||
print(f"Model saved to: {model_save_path}")
|
||||
|
||||
def __repr__(self):
|
||||
return f"ModelTrainer (model={type(self.model).__name__}, batch_size={self.batch_size})"
|
||||
|
||||
# After training, save the final model
|
||||
final_model_path = os.path.join(self.ouptut_dir, "aiuNN-final")
|
||||
self.model.save(final_model_path)
|
||||
print(f"\nFinal model saved to: {final_model_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Load your model first
|
||||
model = AIIABase.load("/root/vision/AIIA/AIIA-base-512/")
|
||||
|
||||
model = AIIABase.load("/root/vision/dataset/AIIA-base-512/")
|
||||
|
||||
trainer = FineTuner(
|
||||
model=model,
|
||||
dataset_paths=[
|
||||
"/root/training_data/vision-dataset/image_upscaler.parquet",
|
||||
"/root/training_data/vision-dataset/image_vec_upscaler.parquet"
|
||||
"/root/training_data/vision-dataset/image_upscaler.0",
|
||||
"/root/training_data/vision-dataset/image_vec_upscaler.0"
|
||||
],
|
||||
batch_size=2,
|
||||
learning_rate=0.001
|
||||
batch_size=8, # Increased batch size
|
||||
learning_rate=1e-4 # Reduced initial LR
|
||||
)
|
||||
|
||||
trainer.train(num_epochs=3)
|
||||
trainer.train(num_epochs=10) # Extended training time
|
|
@ -5,7 +5,7 @@ from torch.nn import functional as F
|
|||
from aiia.model import AIIABase
|
||||
|
||||
class UpScaler:
|
||||
def __init__(self, model_path="AIIA-base-512-upscaler", device="cuda"):
|
||||
def __init__(self, model_path="aiuNN-finetuned", device="cuda"):
|
||||
self.device = torch.device(device)
|
||||
self.model = AIIABase.load(model_path).to(self.device)
|
||||
self.model.eval()
|
||||
|
|
Loading…
Reference in New Issue