fixed model outputs to not run in an infinte loop

This commit is contained in:
Falko Victor Habel 2025-06-02 17:54:40 +02:00
parent 3b140d559c
commit a725dd4539
1 changed files with 12 additions and 1 deletions

View File

@ -32,7 +32,18 @@ class aiuNN(PreTrainedModel):
def forward(self, x):
if self.base_model is None:
raise ValueError("Base model is not loaded. Call 'load_base_model' before forwarding.")
x = self.base_model(x) # Get base features
# Get base features - we need to extract the last hidden state if it's returned as part of a tuple/dict
base_output = self.base_model(x)
if isinstance(base_output, tuple):
x = base_output[0]
elif isinstance(base_output, dict):
x = base_output.get('last_hidden_state', base_output.get('hidden_states'))
if x is None:
raise ValueError("Expected 'last_hidden_state' or 'hidden_states' in model output")
else:
x = base_output
x = self.pixel_shuffle_conv(x) # Expand channels for shuffling
x = self.pixel_shuffle(x) # Rearrange channels into spatial dimensions
return x