From 505b3836054f3ab45d0784d7f613c92b770d533e Mon Sep 17 00:00:00 2001 From: Falko Habel Date: Thu, 3 Jul 2025 14:22:08 +0200 Subject: [PATCH] corrected MOTrainer --- pyproject.toml | 2 +- setup.py | 2 +- src/aiunn/__init__.py | 2 +- src/aiunn/finetune/memory_trainer.py | 5 +++-- 4 files changed, 6 insertions(+), 5 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 64b4591..f021b09 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ requires = ["setuptools>=45", "wheel"] build-backend = "setuptools.build_meta" [project] name = "aiunn" -version = "0.4.0" +version = "0.4.1" description = "Finetuner for image upscaling using AIIA" readme = "README.md" requires-python = ">=3.10" diff --git a/setup.py b/setup.py index f950e60..736b66f 100644 --- a/setup.py +++ b/setup.py @@ -2,7 +2,7 @@ from setuptools import setup, find_packages setup( name="aiunn", - version="0.4.0", + version="0.4.1", packages=find_packages(where="src"), package_dir={"": "src"}, install_requires=[ diff --git a/src/aiunn/__init__.py b/src/aiunn/__init__.py index 2b68267..59d575f 100644 --- a/src/aiunn/__init__.py +++ b/src/aiunn/__init__.py @@ -4,4 +4,4 @@ from .upsampler.aiunn import aiuNN from .upsampler.config import aiuNNConfig from .inference.inference import aiuNNInference -__version__ = "0.4.0" \ No newline at end of file +__version__ = "0.4.1" \ No newline at end of file diff --git a/src/aiunn/finetune/memory_trainer.py b/src/aiunn/finetune/memory_trainer.py index 9a7bd8f..26a1b8d 100644 --- a/src/aiunn/finetune/memory_trainer.py +++ b/src/aiunn/finetune/memory_trainer.py @@ -177,6 +177,7 @@ class MemoryOptimizedTrainer(aiuNNTrainer): with autocast(device_type=self.device.type): outputs = self.model(low_res) + outputs = outputs.clone() loss = self.criterion(outputs, high_res) val_loss += loss.item() @@ -252,10 +253,10 @@ class MemoryOptimizedTrainer(aiuNNTrainer): if hasattr(self, 'use_checkpointing') and self.use_checkpointing: low_res.requires_grad_() outputs = checkpoint(self.model, low_res) - outputs = outputs.clone() # <-- Clone added here + outputs = outputs.clone() else: outputs = self.model(low_res) - outputs = outputs.clone() # <-- Clone added here + outputs = outputs.clone() loss = self.criterion(outputs, high_res) # Scale loss for gradient accumulation