cpu training
This commit is contained in:
parent
992bc0eb7f
commit
4af12873f2
|
@ -13,7 +13,7 @@ class UpscaleDataset(Dataset):
|
||||||
combined_df = pd.DataFrame()
|
combined_df = pd.DataFrame()
|
||||||
for parquet_file in parquet_files:
|
for parquet_file in parquet_files:
|
||||||
# Load data with chunking for memory efficiency
|
# Load data with chunking for memory efficiency
|
||||||
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(4000)
|
df = pd.read_parquet(parquet_file, columns=['image_512', 'image_1024']).head(10000)
|
||||||
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
||||||
|
|
||||||
# Validate data format
|
# Validate data format
|
||||||
|
@ -87,14 +87,14 @@ pretrained_model_path = "/root/vision/AIIA/AIIA-base-512"
|
||||||
|
|
||||||
# Load the model using the AIIA.load class method (the implementation copied in your query)
|
# Load the model using the AIIA.load class method (the implementation copied in your query)
|
||||||
model = AIIABase.load(pretrained_model_path)
|
model = AIIABase.load(pretrained_model_path)
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
from torch import nn, optim
|
from torch import nn, optim
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
# Create your dataset and dataloader
|
# Create your dataset and dataloader
|
||||||
dataset = UpscaleDataset(["/root/training_data/vision-dataset/image_upscaler.parquet", "/root/training_data/vision-dataset/image_vec_upscaler.parquet"], transform=transform)
|
dataset = UpscaleDataset(["/root/training_data/vision-dataset/image_upscaler.parquet", "/root/training_data/vision-dataset/image_vec_upscaler.parquet"], transform=transform)
|
||||||
data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
data_loader = DataLoader(dataset, batch_size=4, shuffle=True)
|
||||||
|
|
||||||
# Define a loss function and optimizer
|
# Define a loss function and optimizer
|
||||||
criterion = nn.MSELoss()
|
criterion = nn.MSELoss()
|
||||||
|
|
Loading…
Reference in New Issue