updated upsampler
This commit is contained in:
parent
933238a530
commit
2aba93caea
|
@ -1,40 +1,69 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from aiia import AIIA
|
||||
from aiia import AIIA, AIIAConfig, AIIABase
|
||||
|
||||
class Upsampler(AIIA):
|
||||
def __init__(self, base_model: AIIA):
|
||||
super().__init__(base_model.config)
|
||||
def init(self, base_model: AIIA):
|
||||
# base_model must be a fully instantiated model (with a .config attribute)
|
||||
super().init(base_model.config)
|
||||
self.base_model = base_model
|
||||
|
||||
# Upsample to double the spatial dimensions using bilinear interpolation
|
||||
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
||||
|
||||
# Update the base model's configuration to include the upsample layer details
|
||||
print(self.base_model.config)
|
||||
if hasattr(self.base_model, 'config'):
|
||||
# Check if layers attribute exists, if not create it
|
||||
if not hasattr(self.base_model.config, 'layers'):
|
||||
setattr(self.base_model.config, 'layers', [])
|
||||
|
||||
# Add the upsample layer configuration
|
||||
current_layers = getattr(self.base_model.config, 'layers', [])
|
||||
current_layers.append({
|
||||
'name': 'Upsample',
|
||||
'type': 'nn.Upsample',
|
||||
'scale_factor': 2,
|
||||
'mode': 'bilinear',
|
||||
'align_corners': False
|
||||
})
|
||||
setattr(self.base_model.config, 'layers', current_layers)
|
||||
self.config = self.base_model.config
|
||||
else:
|
||||
self.config = {}
|
||||
if not hasattr(self.base_model.config, 'layers'):
|
||||
self.base_model.config.layers = []
|
||||
|
||||
self.base_model.config.layers.append({
|
||||
'name': 'Upsample',
|
||||
'type': 'nn.Upsample',
|
||||
'scale_factor': 2,
|
||||
'mode': 'bilinear',
|
||||
'align_corners': False
|
||||
})
|
||||
self.config = self.base_model.config
|
||||
|
||||
def forward(self, x):
|
||||
x = self.base_model(x)
|
||||
x = self.upsample(x)
|
||||
return x
|
||||
|
||||
if __name__ == "__main__":
|
||||
upsampler = Upsampler.load("test2")
|
||||
print("Updated configuration:", upsampler.config.__dict__)
|
||||
@classmethod
|
||||
def load(cls, path: str):
|
||||
"""
|
||||
Override the default load method:
|
||||
- First, load the base model (which includes its configuration and state_dict)
|
||||
- Then instantiate the Upsampler with that base model
|
||||
- Finally, load the Upsampler-specific state dictionary
|
||||
"""
|
||||
# Load the full base model from the given path.
|
||||
# (Assuming AIIABase.load is implemented to load the base model correctly.)
|
||||
base_model = AIIABase.load(path)
|
||||
|
||||
# Create a new instance of Upsampler using the loaded base model.
|
||||
instance = cls(base_model)
|
||||
|
||||
# Choose your device mapping (cuda if available, otherwise cpu)
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
# Load the saved state dictionary that contains weights for both the base model and upsample layer.
|
||||
state_dict = torch.load(f"{path}/model.pth", map_location=device)
|
||||
instance.load_state_dict(state_dict)
|
||||
|
||||
return instance
|
||||
|
||||
if __name__ == "main":
|
||||
from aiia import AIIABase, AIIAConfig
|
||||
# Create a configuration and build a base model.
|
||||
config = AIIAConfig()
|
||||
base_model = AIIABase("test2")
|
||||
# Instantiate Upsampler from the base model (works correctly).
|
||||
upsampler = Upsampler(base_model)
|
||||
|
||||
# Save the model (both configuration and weights).
|
||||
upsampler.save("test2")
|
||||
|
||||
# Now load using the overridden load method; this will load the complete model.
|
||||
upsampler_loaded = Upsampler.load("test2")
|
||||
print("Updated configuration:", upsampler_loaded.config.__dict__)
|
||||
|
|
Loading…
Reference in New Issue