Merge pull request 'feat/model_fix' (#17) from feat/model_fix into develop
Gitea Actions For AIIA / Explore-Gitea-Actions (push) Successful in 26s
Details
Gitea Actions For AIIA / Explore-Gitea-Actions (push) Successful in 26s
Details
Reviewed-on: #17
This commit is contained in:
commit
112ad87f6a
|
@ -1,4 +1,4 @@
|
|||
include LICENSE
|
||||
include README.md
|
||||
include requirements.txt
|
||||
recursive-include src/aiia *
|
||||
recursive-include src/aiunn *
|
|
@ -3,7 +3,7 @@ requires = ["setuptools>=45", "wheel"]
|
|||
build-backend = "setuptools.build_meta"
|
||||
[project]
|
||||
name = "aiunn"
|
||||
version = "0.1.1"
|
||||
version = "0.2.2"
|
||||
description = "Finetuner for image upscaling using AIIA"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
torch
|
||||
aiia
|
||||
pillow
|
||||
pandas
|
||||
torchvision
|
||||
scikit-learn
|
||||
git+https://gitea.fabelous.app/Machine-Learning/AIIA.git
|
2
setup.py
2
setup.py
|
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
|||
|
||||
setup(
|
||||
name="aiunn",
|
||||
version="0.2.1",
|
||||
version="0.2.2",
|
||||
packages=find_packages(where="src"),
|
||||
package_dir={"": "src"},
|
||||
install_requires=[
|
||||
|
|
|
@ -3,4 +3,4 @@ from .upsampler.aiunn import aiuNN
|
|||
from .upsampler.config import aiuNNConfig
|
||||
from .inference.inference import aiuNNInference
|
||||
|
||||
__version__ = "0.2.1"
|
||||
__version__ = "0.2.2"
|
|
@ -32,7 +32,18 @@ class aiuNN(PreTrainedModel):
|
|||
def forward(self, x):
|
||||
if self.base_model is None:
|
||||
raise ValueError("Base model is not loaded. Call 'load_base_model' before forwarding.")
|
||||
x = self.base_model(x) # Get base features
|
||||
|
||||
# Get base features - we need to extract the last hidden state if it's returned as part of a tuple/dict
|
||||
base_output = self.base_model(x)
|
||||
if isinstance(base_output, tuple):
|
||||
x = base_output[0]
|
||||
elif isinstance(base_output, dict):
|
||||
x = base_output.get('last_hidden_state', base_output.get('hidden_states'))
|
||||
if x is None:
|
||||
raise ValueError("Expected 'last_hidden_state' or 'hidden_states' in model output")
|
||||
else:
|
||||
x = base_output
|
||||
|
||||
x = self.pixel_shuffle_conv(x) # Expand channels for shuffling
|
||||
x = self.pixel_shuffle(x) # Rearrange channels into spatial dimensions
|
||||
return x
|
||||
|
|
Loading…
Reference in New Issue