added extra config

This commit is contained in:
Falko Victor Habel 2025-02-23 19:56:17 +01:00
parent b740819757
commit 048a8d9861
2 changed files with 51 additions and 30 deletions

36
src/aiunn/config.py Normal file
View File

@ -0,0 +1,36 @@
from aiia import AIIAConfig
class UpsamplerConfig(AIIAConfig):
def __init__(
self,
upsample_scale: int = 2,
upsample_mode: str = 'bilinear',
upsample_align_corners: bool = False,
layers=None,
**kwargs
):
# Initialize base configuration.
super().__init__(**kwargs)
self.layers = layers if layers is not None else []
# Upsampler-specific parameters.
self.upsample_scale = upsample_scale
self.upsample_mode = upsample_mode
self.upsample_align_corners = upsample_align_corners
# Automatically add the upsample layer details.
self.add_upsample_layer()
def add_upsample_layer(self):
upsample_layer = {
'name': 'Upsample',
'type': 'nn.Upsample',
'scale_factor': self.upsample_scale,
'mode': self.upsample_mode,
'align_corners': self.upsample_align_corners
}
# Add the upsample layer only if not already present.
if not any(layer.get('name') == 'Upsample' for layer in self.layers):
self.layers.append(upsample_layer)

View File

@ -3,27 +3,19 @@ import torch.nn as nn
from aiia import AIIA, AIIAConfig, AIIABase
# Upsampler model that uses the configuration from the base model.
class Upsampler(AIIA):
def init(self, base_model: AIIA):
# base_model must be a fully instantiated model (with a .config attribute)
super().init(base_model.config)
def __init__(self, base_model: AIIABase):
# Assume that base_model.config is an instance of UpsamplerConfig.
super().__init__(base_model.config)
self.base_model = base_model
# Upsample to double the spatial dimensions using bilinear interpolation
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
# Update the base model's configuration to include the upsample layer details
if not hasattr(self.base_model.config, 'layers'):
self.base_model.config.layers = []
self.base_model.config.layers.append({
'name': 'Upsample',
'type': 'nn.Upsample',
'scale_factor': 2,
'mode': 'bilinear',
'align_corners': False
})
self.config = self.base_model.config
# Create the upsample layer using values from the configuration.
self.upsample = nn.Upsample(
scale_factor=self.config.upsample_scale,
mode=self.config.upsample_mode,
align_corners=self.config.upsample_align_corners
)
def forward(self, x):
x = self.base_model(x)
@ -33,27 +25,20 @@ class Upsampler(AIIA):
@classmethod
def load(cls, path: str):
"""
Override the default load method:
- First, load the base model (which includes its configuration and state_dict)
- Then instantiate the Upsampler with that base model
- Finally, load the Upsampler-specific state dictionary
Load the model:
- First, load the base model (including its configuration and state_dict).
- Then, wrap it with the Upsampler class.
- Finally, load the combined state dictionary.
"""
# Load the full base model from the given path.
# (Assuming AIIABase.load is implemented to load the base model correctly.)
base_model = AIIABase.load(path)
# Create a new instance of Upsampler using the loaded base model.
instance = cls(base_model)
# Choose your device mapping (cuda if available, otherwise cpu)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load the saved state dictionary that contains weights for both the base model and upsample layer.
state_dict = torch.load(f"{path}/model.pth", map_location=device)
instance.load_state_dict(state_dict)
return instance
if __name__ == "main":
from aiia import AIIABase, AIIAConfig
# Create a configuration and build a base model.