76 lines
2.6 KiB
Python
76 lines
2.6 KiB
Python
import os
|
|
import tempfile
|
|
import pytest
|
|
import torch.nn as nn
|
|
from aiia import AIIAConfig
|
|
|
|
def test_aiia_config_initialization():
|
|
config = AIIAConfig()
|
|
assert config.model_name == "AIIA"
|
|
assert config.kernel_size == 3
|
|
assert config.activation_function == "GELU"
|
|
assert config.hidden_size == 512
|
|
assert config.num_hidden_layers == 12
|
|
assert config.num_channels == 3
|
|
assert config.learning_rate == 5e-5
|
|
|
|
def test_aiia_config_custom_initialization():
|
|
config = AIIAConfig(
|
|
model_name="CustomModel",
|
|
kernel_size=5,
|
|
activation_function="ReLU",
|
|
hidden_size=1024,
|
|
num_hidden_layers=8,
|
|
num_channels=1,
|
|
learning_rate=1e-4
|
|
)
|
|
assert config.model_name == "CustomModel"
|
|
assert config.kernel_size == 5
|
|
assert config.activation_function == "ReLU"
|
|
assert config.hidden_size == 1024
|
|
assert config.num_hidden_layers == 8
|
|
assert config.num_channels == 1
|
|
assert config.learning_rate == 1e-4
|
|
|
|
def test_aiia_config_invalid_activation_function():
|
|
with pytest.raises(ValueError):
|
|
AIIAConfig(activation_function="InvalidFunction")
|
|
|
|
def test_aiia_config_to_dict():
|
|
config = AIIAConfig()
|
|
config_dict = config.to_dict()
|
|
assert isinstance(config_dict, dict)
|
|
assert config_dict["model_name"] == "AIIA"
|
|
assert config_dict["kernel_size"] == 3
|
|
|
|
def test_aiia_config_save_and_load():
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
config = AIIAConfig(model_name="TempModel")
|
|
save_path = os.path.join(tmpdir, "config")
|
|
config.save(save_path)
|
|
|
|
loaded_config = AIIAConfig.load(save_path)
|
|
assert loaded_config.model_name == "TempModel"
|
|
assert loaded_config.kernel_size == 3
|
|
assert loaded_config.activation_function == "GELU"
|
|
|
|
def test_aiia_config_save_and_load_with_custom_attributes():
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
config = AIIAConfig(model_name="TempModel", custom_attr="value")
|
|
save_path = os.path.join(tmpdir, "config")
|
|
config.save(save_path)
|
|
|
|
loaded_config = AIIAConfig.load(save_path)
|
|
assert loaded_config.model_name == "TempModel"
|
|
assert loaded_config.custom_attr == "value"
|
|
|
|
def test_aiia_config_save_and_load_with_nested_attributes():
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
config = AIIAConfig(model_name="TempModel", nested={"key": "value"})
|
|
save_path = os.path.join(tmpdir, "config")
|
|
config.save(save_path)
|
|
|
|
loaded_config = AIIAConfig.load(save_path)
|
|
assert loaded_config.model_name == "TempModel"
|
|
assert loaded_config.nested == {"key": "value"}
|