AIIA/src/aiia/model/Model.py

231 lines
8.3 KiB
Python

from .config import AIIAConfig
from torch import nn
from transformers import PreTrainedModel
import torch
import copy
class AIIABase(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig):
super().__init__(config)
# Initialize layers based on configuration
layers = []
in_channels = config.num_channels
for _ in range(config.num_hidden_layers):
layers.extend([
nn.Conv2d(in_channels, config.hidden_size,
kernel_size=config.kernel_size, padding=1),
getattr(nn, config.activation_function)(),
nn.MaxPool2d(kernel_size=1, stride=1)
])
in_channels = config.hidden_size
self.cnn = nn.Sequential(*layers)
def forward(self, x):
return self.cnn(x)
class AIIABaseShared(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig):
super().__init__(config)
"""
Initialize the AIIABaseShared model.
Args:
config (AIIAConfig): Configuration object containing model parameters.
"""
super().__init__(config=config)
# Initialize the network components
self._initialize_network()
self._initialize_activation_andPooling()
def _initialize_network(self):
"""Initialize the shared and unique layers of the network."""
# Create a single shared convolutional layer
self.shared_layer = nn.Conv2d(
in_channels=self.config.num_channels,
out_channels=self.config.hidden_size,
kernel_size=self.config.kernel_size,
padding=1 # Using same padding as defined in config
)
# Initialize the unique layers with separate weights and biases
self.unique_layers = nn.ModuleList()
current_in_channels = self.config.hidden_size
layer = nn.Conv2d(
in_channels=current_in_channels,
out_channels=self.config.hidden_size,
kernel_size=self.config.kernel_size,
padding=1 # Using same padding as defined in config
)
self.unique_layers.append(layer)
def _initialize_activation_andPooling(self):
"""Initialize activation function and pooling layers."""
# Get activation function from nn module
self.activation = getattr(nn, self.config.activation_function)()
# Initialize max pooling layer
self.max_pool = nn.MaxPool2d(
kernel_size=1,
stride=1,
)
def forward(self, x):
"""Forward pass of the network."""
# Apply shared layer transformation
out = self.shared_layer(x)
# Pass through activation function
out = self.activation(out)
# Apply max pooling
out = self.max_pool(out)
# Pass through unique layers
for unique_layer in self.unique_layers:
out = unique_layer(out)
out = self.activation(out)
out = self.max_pool(out)
return out
class AIIAExpert(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig, base_class=AIIABase):
super().__init__(config=config)
# Initialize base CNN with configuration and chosen base class
if issubclass(base_class, AIIABase):
self.base_cnn = AIIABase(self.config)
elif issubclass(base_class, AIIABaseShared):
self.base_cnn = AIIABaseShared(self.config)
else:
raise ValueError("Invalid base class")
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the expert model.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: Output tensor after processing through base CNN
"""
# Process input through the base CNN
return self.base_cnn(x)
class AIIAmoe(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig, base_class=AIIABase):
super().__init__(config=config)
self.config = config
# Get num_experts directly from config instead of parameter
num_experts = getattr(config, "num_experts", 3) # default to 3 if not in config
# Initialize multiple experts from the chosen base class
self.experts = nn.ModuleList([
AIIAExpert(self.config, base_class=base_class)
for _ in range(num_experts)
])
gate_in_features = self.config.hidden_size
# Create a gating network that maps the aggregated features to num_experts weights
self.gate = nn.Sequential(
nn.Linear(gate_in_features, num_experts),
nn.Softmax(dim=1)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the Mixture-of-Experts model.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: Merged output tensor from all experts
"""
# Stack the outputs from each expert.
# Each expert's output should have shape (B, C, H, W). After stacking, expert_outputs has shape:
# (B, num_experts, C, H, W)
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
# Aggregate spatial features: average across the spatial dimensions (H, W).
# This results in a tensor with shape (B, num_experts, C)
spatial_avg = torch.mean(expert_outputs, dim=(3, 4))
# To feed the gating network, further average across the expert dimension,
# obtaining a tensor of shape (B, C) that represents the global feature summary.
gate_input = torch.mean(spatial_avg, dim=1)
# Compute gating weights using the gating network.
# The output gate_weights has shape (B, num_experts)
gate_weights = self.gate(gate_input)
# Expand the gate weights to match the expert outputs shape so they can be combined.
# After unsqueezing, gate_weights has shape (B, num_experts, 1, 1, 1)
gate_weights_expanded = gate_weights.unsqueeze(2).unsqueeze(3).unsqueeze(4)
# Multiply each expert's output by its corresponding gating weight and sum over experts.
# The merged_output retains the shape (B, C, H, W)
merged_output = torch.sum(expert_outputs * gate_weights_expanded, dim=1)
return merged_output
class AIIASparseMoe(AIIAmoe):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig, base_class=AIIABase):
super().__init__(config=config, base_class=base_class)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Compute the gate_weights similar to standard moe.
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
spatial_avg = torch.mean(expert_outputs, dim=(3, 4))
gate_input = torch.mean(spatial_avg, dim=1)
gate_weights = self.gate(gate_input)
# Select the top-k experts for each input based on gating weights.
_, top_k_indices = gate_weights.topk(self.config.top_k, dim=-1)
# Initialize a list to store outputs from selected experts.
merged_outputs = []
# Iterate over batch dimension to apply top-k selection per instance.
for i in range(x.size(0)):
# Get the indices of top-k experts for current instance.
instance_top_k_indices = top_k_indices[i]
# Select outputs from top-k experts.
selected_expert_outputs = expert_outputs[i][instance_top_k_indices]
# Average over the selected experts to get a single output per instance.
averaged_output = torch.mean(selected_expert_outputs, dim=0)
merged_outputs.append(averaged_output.unsqueeze(0))
# Stack outputs from all instances back into a batch tensor.
return torch.cat(merged_outputs, dim=0)
if __name__ =="__main__":
config = AIIAConfig()
model = AIIAmoe(config, num_experts=5)
model.save_pretrained("test")