develop #41

Merged
Fabel merged 27 commits from develop into main 2025-04-17 17:08:57 +00:00
1 changed files with 120 additions and 32 deletions
Showing only changes of commit 9a8cefa37c - Show all commits

View File

@ -139,43 +139,110 @@ class Pretrainer:
torch.save(checkpoint_data, checkpoint_path)
return checkpoint_path
def train(self, dataset_paths, output_path="AIIA", column="image_bytes",
num_epochs=3, batch_size=2, sample_size=10000, checkpoint_dir=None):
"""Train the model using multiple specified datasets.
def load_checkpoint(self, checkpoint_dir, specific_checkpoint=None):
"""
Check for checkpoints and load if available.
Args:
dataset_paths (List[str]): List of paths to parquet dataset files
output_path (str, optional): Path to save the trained model. Defaults to "AIIA".
column (str, optional): Column name containing image data. Defaults to "image_bytes".
num_epochs (int, optional): Number of training epochs. Defaults to 3.
batch_size (int, optional): Size of training batches. Defaults to 2.
sample_size (int, optional): Number of samples to use from each dataset. Defaults to 10000.
checkpoint_dir (str, optional): Directory to save checkpoints. If None, no checkpoints are saved.
checkpoint_dir (str): Directory where checkpoints are stored
specific_checkpoint (str, optional): Specific checkpoint file to load. If None, loads the most recent.
Raises:
ValueError: If no dataset paths are provided or if no valid datasets could be loaded.
The function performs the following:
1. Loads and merges multiple parquet datasets
2. Trains the model using denoising and rotation tasks
3. Validates the model performance
4. Saves checkpoints at regular intervals (every 2 hours) and at 22:00
5. Maintains only the 3 most recent regular checkpoints
6. Saves the best model based on validation loss
Returns:
tuple: (loaded_epoch, loaded_batch) if checkpoint was loaded, None otherwise
"""
# Create checkpoint directory if it doesn't exist
os.makedirs(checkpoint_dir, exist_ok=True)
# If a specific checkpoint is requested
if specific_checkpoint:
checkpoint_path = os.path.join(checkpoint_dir, specific_checkpoint)
if os.path.exists(checkpoint_path):
return self._load_checkpoint_file(checkpoint_path)
else:
print(f"Specified checkpoint {specific_checkpoint} not found.")
return None
# Find all checkpoint files
checkpoint_files = [f for f in os.listdir(checkpoint_dir) if f.startswith("checkpoint_") and f.endswith(".pt")]
if not checkpoint_files:
print("No checkpoints found in directory.")
return None
# Find the most recent checkpoint
checkpoint_files.sort(key=lambda x: os.path.getmtime(os.path.join(checkpoint_dir, x)), reverse=True)
most_recent = checkpoint_files[0]
checkpoint_path = os.path.join(checkpoint_dir, most_recent)
return self._load_checkpoint_file(checkpoint_path)
def _load_checkpoint_file(self, checkpoint_path):
"""
Load a specific checkpoint file.
Args:
checkpoint_path (str): Path to the checkpoint file
Returns:
tuple: (loaded_epoch, loaded_batch) if checkpoint was loaded, None otherwise
"""
try:
checkpoint = torch.load(checkpoint_path, map_location=self.device)
# Load model state
self.model.load_state_dict(checkpoint['model_state_dict'])
# Load projection head state
self.projection_head.load_state_dict(checkpoint['projection_head_state_dict'])
# Load optimizer state
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Load loss history
self.train_losses = checkpoint.get('train_losses', [])
self.val_losses = checkpoint.get('val_losses', [])
loaded_epoch = checkpoint['epoch']
loaded_batch = checkpoint['batch']
print(f"Checkpoint loaded from {checkpoint_path}")
print(f"Resuming from epoch {loaded_epoch}, batch {loaded_batch}")
return loaded_epoch, loaded_batch
except Exception as e:
print(f"Error loading checkpoint: {e}")
return None
def train(self, dataset_paths, output_path="AIIA", column="image_bytes",
num_epochs=3, batch_size=2, sample_size=10000, checkpoint_dir=None):
"""Train the model using multiple specified datasets with checkpoint resumption support."""
if not dataset_paths:
raise ValueError("No dataset paths provided")
# Checkpoint tracking variables
# Initialize checkpoint tracking variables
last_checkpoint_time = time.time()
checkpoint_interval = 2 * 60 * 60 # 2 hours in seconds
last_22_date = None
recent_checkpoints = []
# Create checkpoint directory if specified
# Initialize resumption variables
start_epoch = 0
start_batch = 0
resume_training = False
# Check for existing checkpoint and load if available
if checkpoint_dir is not None:
os.makedirs(checkpoint_dir, exist_ok=True)
# Read and merge all datasets
checkpoint_info = self.load_checkpoint(checkpoint_dir)
if checkpoint_info:
start_epoch, start_batch = checkpoint_info
resume_training = True
# Adjust epoch to be 0-indexed for the loop
start_epoch -= 1
# Load and merge datasets
dataframes = []
for path in dataset_paths:
try:
@ -198,11 +265,13 @@ class Pretrainer:
collate_fn=self.safe_collate
)
# Initialize loss functions and tracking variables
criterion_denoise = nn.MSELoss()
criterion_rotate = nn.CrossEntropyLoss()
best_val_loss = float('inf')
for epoch in range(num_epochs):
# Main training loop
for epoch in range(start_epoch, num_epochs):
print(f"\nEpoch {epoch+1}/{num_epochs}")
print("-" * 20)
@ -212,10 +281,22 @@ class Pretrainer:
total_train_loss = 0.0
batch_count = 0
for batch_data in tqdm(aiia_loader.train_loader):
# Convert data loader to enumerated list for batch tracking and resumption
train_batches = list(enumerate(aiia_loader.train_loader))
# Determine how many batches to skip if resuming from checkpoint
skip_batches = start_batch if (epoch == start_epoch and resume_training) else 0
# Process batches with proper resumption handling
for i, batch_data in tqdm(train_batches[skip_batches:],
initial=skip_batches,
total=len(train_batches)):
if batch_data is None:
continue
# Use i+1 as the actual batch count (to match 1-indexed batch numbers in checkpoints)
current_batch = i + 1
# Check if we need to save a checkpoint
current_time = time.time()
current_dt = datetime.datetime.now(datetime.timezone(datetime.timedelta(hours=2))) # German time
@ -223,8 +304,8 @@ class Pretrainer:
# Regular 2-hour checkpoint
if checkpoint_dir and (current_time - last_checkpoint_time) >= checkpoint_interval:
checkpoint_name = f"checkpoint_epoch{epoch+1}_batch{batch_count}.pt"
checkpoint_path = self._save_checkpoint(checkpoint_dir, epoch, batch_count, checkpoint_name)
checkpoint_name = f"checkpoint_epoch{epoch+1}_batch{current_batch}.pt"
checkpoint_path = self._save_checkpoint(checkpoint_dir, epoch, current_batch, checkpoint_name)
# Track and maintain only 3 recent checkpoints
recent_checkpoints.append(checkpoint_path)
@ -236,16 +317,15 @@ class Pretrainer:
last_checkpoint_time = current_time
print(f"Checkpoint saved at {checkpoint_path}")
# Special 22:00 checkpoint
is_22_oclock = current_dt.hour == 22 and current_dt.minute == 0 and current_dt.second < 10
# Special 22:00 checkpoint (considering it's currently 10:15 PM)
is_22_oclock = current_dt.hour == 22 and current_dt.minute < 15
if checkpoint_dir and is_22_oclock and last_22_date != today:
checkpoint_name = f"checkpoint_22h_{today.strftime('%Y%m%d')}.pt"
checkpoint_path = self._save_checkpoint(checkpoint_dir, epoch, batch_count, checkpoint_name)
checkpoint_path = self._save_checkpoint(checkpoint_dir, epoch, current_batch, checkpoint_name)
last_22_date = today
print(f"22:00 Checkpoint saved at {checkpoint_path}")
# Process the batch
self.optimizer.zero_grad()
batch_loss = self._process_batch(batch_data, criterion_denoise, criterion_rotate)
@ -256,6 +336,12 @@ class Pretrainer:
total_train_loss += batch_loss.item()
batch_count += 1
# Reset batch skipping after completing the resumed epoch
if resume_training and epoch == start_epoch:
resume_training = False
start_batch = 0
# Calculate and store training loss
avg_train_loss = total_train_loss / max(batch_count, 1)
self.train_losses.append(avg_train_loss)
print(f"Training Loss: {avg_train_loss:.4f}")
@ -265,11 +351,13 @@ class Pretrainer:
self.projection_head.eval()
val_loss = self._validate(aiia_loader.val_loader, criterion_denoise, criterion_rotate)
# Save best model based on validation loss
if val_loss < best_val_loss:
best_val_loss = val_loss
self.model.save(output_path)
print("Best model saved!")
# Save training history
losses_path = os.path.join(os.path.dirname(output_path), 'losses.csv')
self.save_losses(losses_path)