develop #41

Merged
Fabel merged 27 commits from develop into main 2025-04-17 17:08:57 +00:00
1 changed files with 48 additions and 65 deletions
Showing only changes of commit 3e78a595c9 - Show all commits

View File

@ -1,67 +1,48 @@
from .config import AIIAConfig
from torch import nn
from transformers import PretrainedModel
from transformers import PreTrainedModel
import torch
import os
import copy
import warnings
class AIIA(nn.Module):
def __init__(self, config: AIIAConfig, **kwargs):
super(AIIA, self).__init__()
# Create a deep copy of the configuration to avoid sharing
self.config = copy.deepcopy(config)
class AIIABase(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
# Update the config with any additional keyword arguments
for key, value in kwargs.items():
setattr(self.config, key, value)
def save(self, path: str):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
torch.save(self.state_dict(), f"{path}/model.pth")
self.config.save(path)
class AIIABase(AIIA):
def __init__(self, config: AIIAConfig, **kwargs):
super().__init__(config=config, **kwargs)
self.config = self.config
def __init__(self, config: AIIAConfig):
super().__init__(config)
# Initialize layers based on configuration
layers = []
in_channels = self.config.num_channels
in_channels = config.num_channels
for _ in range(self.config.num_hidden_layers):
for _ in range(config.num_hidden_layers):
layers.extend([
nn.Conv2d(in_channels, self.config.hidden_size,
kernel_size=self.config.kernel_size, padding=1),
getattr(nn, self.config.activation_function)(),
nn.Conv2d(in_channels, config.hidden_size,
kernel_size=config.kernel_size, padding=1),
getattr(nn, config.activation_function)(),
nn.MaxPool2d(kernel_size=1, stride=1)
])
in_channels = self.config.hidden_size
in_channels = config.hidden_size
self.cnn = nn.Sequential(*layers)
def forward(self, x):
return self.cnn(x)
class AIIABaseShared(AIIA):
def __init__(self, config: AIIAConfig, **kwargs):
class AIIABaseShared(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig):
super().__init__(config)
"""
Initialize the AIIABaseShared model.
Args:
config (AIIAConfig): Configuration object containing model parameters.
**kwargs: Additional keyword arguments to override configuration settings.
"""
super().__init__(config=config, **kwargs)
# Update configuration with new parameters if provided
self. config = copy.deepcopy(config)
for key, value in kwargs.items():
setattr(self.config, key, value)
super().__init__(config=config)
# Initialize the network components
self._initialize_network()
@ -120,16 +101,17 @@ class AIIABaseShared(AIIA):
return out
class AIIAExpert(AIIA):
def __init__(self, config: AIIAConfig, base_class=AIIABase, **kwargs):
super().__init__(config=config, **kwargs)
self.config = self.config
class AIIAExpert(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig, base_class=AIIABase):
super().__init__(config=config)
# Initialize base CNN with configuration and chosen base class
if issubclass(base_class, AIIABase):
self.base_cnn = AIIABase(self.config, **kwargs)
self.base_cnn = AIIABase(self.config)
elif issubclass(base_class, AIIABaseShared):
self.base_cnn = AIIABaseShared(self.config, **kwargs)
self.base_cnn = AIIABaseShared(self.config)
else:
raise ValueError("Invalid base class")
@ -146,26 +128,26 @@ class AIIAExpert(AIIA):
# Process input through the base CNN
return self.base_cnn(x)
class AIIAmoe(AIIA):
def __init__(self, config: AIIAConfig, num_experts: int = 3, base_class=AIIABase, **kwargs):
super().__init__(config=config, **kwargs)
class AIIAmoe(PreTrainedModel):
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig, base_class=AIIABase):
super().__init__(config=config)
self.config = config
# Update the config to include the number of experts.
self.config.num_experts = num_experts
# Get num_experts directly from config instead of parameter
num_experts = getattr(config, "num_experts", 3) # default to 3 if not in config
# Initialize multiple experts from the chosen base class.
# Initialize multiple experts from the chosen base class
self.experts = nn.ModuleList([
AIIAExpert(self.config, base_class=base_class, **kwargs)
AIIAExpert(self.config, base_class=base_class)
for _ in range(num_experts)
])
# To generate gating weights, we first need to determine the feature dimension.
# Each expert is assumed to return an output of shape (B, C, H, W); after averaging over H and W,
# we obtain a tensor of shape (B, C) where C is the number of channels (here assumed to be 224).
gate_in_features = 512 # Adjust this if your expert output changes.
gate_in_features = self.config.hidden_size
# Create a gating network that maps the aggregated features to num_experts weights.
# Create a gating network that maps the aggregated features to num_experts weights
self.gate = nn.Sequential(
nn.Linear(gate_in_features, num_experts),
nn.Softmax(dim=1)
@ -209,9 +191,10 @@ class AIIAmoe(AIIA):
class AIIASparseMoe(AIIAmoe):
def __init__(self, config: AIIAConfig, num_experts: int = 3, top_k: int = 2, base_class=AIIABase, **kwargs):
super().__init__(config=config, num_experts=num_experts, base_class=base_class, **kwargs)
self.top_k = top_k
config_class = AIIAConfig
base_model_prefix = "AIIA"
def __init__(self, config: AIIAConfig, base_class=AIIABase):
super().__init__(config=config, base_class=base_class)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Compute the gate_weights similar to standard moe.
@ -221,7 +204,7 @@ class AIIASparseMoe(AIIAmoe):
gate_weights = self.gate(gate_input)
# Select the top-k experts for each input based on gating weights.
_, top_k_indices = gate_weights.topk(self.top_k, dim=-1)
_, top_k_indices = gate_weights.topk(self.config.top_k, dim=-1)
# Initialize a list to store outputs from selected experts.
merged_outputs = []
@ -245,4 +228,4 @@ class AIIASparseMoe(AIIAmoe):
if __name__ =="__main__":
config = AIIAConfig()
model = AIIAmoe(config, num_experts=5)
model.save("test")
model.save_pretrained("test")