Compare commits
No commits in common. "64787cbffcce9e152294fa1453d3e9bdc2c68da9" and "3735bdd3e64846cf0dd21258276597ac54c4ec65" have entirely different histories.
64787cbffc
...
3735bdd3e6
10
.coveragerc
10
.coveragerc
|
@ -1,10 +0,0 @@
|
||||||
[run]
|
|
||||||
branch = True
|
|
||||||
source = src
|
|
||||||
omit =
|
|
||||||
*/tests/*
|
|
||||||
*/migrations/*
|
|
||||||
|
|
||||||
[report]
|
|
||||||
show_missing = True
|
|
||||||
fail_under = 80
|
|
|
@ -1,3 +0,0 @@
|
||||||
[pytest]
|
|
||||||
testpaths = tests/
|
|
||||||
python_files = test_*.py
|
|
|
@ -15,7 +15,7 @@ class FilePathLoader:
|
||||||
self.successful_count = 0
|
self.successful_count = 0
|
||||||
self.skipped_count = 0
|
self.skipped_count = 0
|
||||||
|
|
||||||
if self.file_path_column not in dataset.columns:
|
if self.file_path_column not in dataset.column_names:
|
||||||
raise ValueError(f"Column '{self.file_path_column}' not found in dataset.")
|
raise ValueError(f"Column '{self.file_path_column}' not found in dataset.")
|
||||||
|
|
||||||
def _get_image(self, item):
|
def _get_image(self, item):
|
||||||
|
@ -106,11 +106,7 @@ class JPGImageLoader:
|
||||||
print(f"Skipped {self.skipped_count} images due to errors.")
|
print(f"Skipped {self.skipped_count} images due to errors.")
|
||||||
|
|
||||||
class AIIADataLoader:
|
class AIIADataLoader:
|
||||||
def __init__(self, dataset, batch_size=32, val_split=0.2, seed=42, column="file_path",
|
def __init__(self, dataset, batch_size=32, val_split=0.2, seed=42, column="file_path", label_column=None, pretraining=False, **dataloader_kwargs):
|
||||||
label_column=None, pretraining=False, **dataloader_kwargs):
|
|
||||||
if column not in dataset.columns:
|
|
||||||
raise ValueError(f"Column '{column}' not found in dataset")
|
|
||||||
|
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.val_split = val_split
|
self.val_split = val_split
|
||||||
self.seed = seed
|
self.seed = seed
|
||||||
|
@ -149,6 +145,7 @@ class AIIADataLoader:
|
||||||
if not self.items:
|
if not self.items:
|
||||||
raise ValueError("No valid items were loaded from the dataset")
|
raise ValueError("No valid items were loaded from the dataset")
|
||||||
|
|
||||||
|
|
||||||
train_indices, val_indices = self._split_data()
|
train_indices, val_indices = self._split_data()
|
||||||
|
|
||||||
self.train_dataset = self._create_subset(train_indices)
|
self.train_dataset = self._create_subset(train_indices)
|
||||||
|
@ -195,11 +192,9 @@ class AIIADataset(torch.utils.data.Dataset):
|
||||||
if not isinstance(image, Image.Image):
|
if not isinstance(image, Image.Image):
|
||||||
raise ValueError(f"Invalid image at index {idx}")
|
raise ValueError(f"Invalid image at index {idx}")
|
||||||
|
|
||||||
# Check image dimensions before transform
|
|
||||||
if image.size[0] < 224 or image.size[1] < 224:
|
|
||||||
raise ValueError("Invalid image dimensions")
|
|
||||||
|
|
||||||
image = self.transform(image)
|
image = self.transform(image)
|
||||||
|
if image.shape != (3, 224, 224):
|
||||||
|
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||||
|
|
||||||
if task == 'denoise':
|
if task == 'denoise':
|
||||||
noise_std = 0.1
|
noise_std = 0.1
|
||||||
|
@ -219,20 +214,15 @@ class AIIADataset(torch.utils.data.Dataset):
|
||||||
image, label = item
|
image, label = item
|
||||||
if not isinstance(image, Image.Image):
|
if not isinstance(image, Image.Image):
|
||||||
raise ValueError(f"Invalid image at index {idx}")
|
raise ValueError(f"Invalid image at index {idx}")
|
||||||
|
|
||||||
# Check image dimensions before transform
|
|
||||||
if image.size[0] < 224 or image.size[1] < 224:
|
|
||||||
raise ValueError("Invalid image dimensions")
|
|
||||||
|
|
||||||
image = self.transform(image)
|
image = self.transform(image)
|
||||||
|
if image.shape != (3, 224, 224):
|
||||||
|
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||||
return image, label
|
return image, label
|
||||||
else:
|
else:
|
||||||
image = item[0] if isinstance(item, tuple) else item
|
if isinstance(item, Image.Image):
|
||||||
if not isinstance(image, Image.Image):
|
image = self.transform(item)
|
||||||
raise ValueError(f"Invalid image at index {idx}")
|
else:
|
||||||
|
image = self.transform(item[0])
|
||||||
# Check image dimensions before transform
|
if image.shape != (3, 224, 224):
|
||||||
if image.size[0] < 224 or image.size[1] < 224:
|
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||||
raise ValueError("Invalid image dimensions")
|
|
||||||
image = self.transform(image)
|
|
||||||
return image
|
return image
|
||||||
|
|
|
@ -1,112 +0,0 @@
|
||||||
import pytest
|
|
||||||
from PIL import Image
|
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from torchvision import transforms
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
from aiia.data.DataLoader import FilePathLoader, JPGImageLoader, AIIADataLoader, AIIADataset
|
|
||||||
|
|
||||||
def create_sample_dataset(file_paths=None):
|
|
||||||
if file_paths is None:
|
|
||||||
file_paths = ['path/to/image1.jpg', 'path/to/image2.png']
|
|
||||||
|
|
||||||
data = {
|
|
||||||
'file_path': file_paths,
|
|
||||||
'label': [0] * len(file_paths) # Match length of labels to file_paths
|
|
||||||
}
|
|
||||||
df = pd.DataFrame(data)
|
|
||||||
return df
|
|
||||||
|
|
||||||
def create_sample_bytes_dataset(bytes_data=None):
|
|
||||||
if bytes_data is None:
|
|
||||||
bytes_data = [b'fake_image_data_1', b'fake_image_data_2']
|
|
||||||
|
|
||||||
data = {
|
|
||||||
'jpg': bytes_data,
|
|
||||||
'label': [0] * len(bytes_data) # Match length of labels to bytes_data
|
|
||||||
}
|
|
||||||
df = pd.DataFrame(data)
|
|
||||||
return df
|
|
||||||
|
|
||||||
def test_file_path_loader(mocker):
|
|
||||||
# Mock Image.open to return a fake image
|
|
||||||
mock_image = Image.new('RGB', (224, 224))
|
|
||||||
mocker.patch('PIL.Image.open', return_value=mock_image)
|
|
||||||
|
|
||||||
dataset = create_sample_dataset()
|
|
||||||
loader = FilePathLoader(dataset, label_column='label') # Added label_column
|
|
||||||
item = loader.get_item(0)
|
|
||||||
assert isinstance(item[0], Image.Image)
|
|
||||||
assert item[1] == 0
|
|
||||||
|
|
||||||
loader.print_summary()
|
|
||||||
|
|
||||||
def test_jpg_image_loader(mocker):
|
|
||||||
# Mock Image.open to return a fake image
|
|
||||||
mock_image = Image.new('RGB', (224, 224))
|
|
||||||
mocker.patch('PIL.Image.open', return_value=mock_image)
|
|
||||||
|
|
||||||
dataset = create_sample_bytes_dataset()
|
|
||||||
loader = JPGImageLoader(dataset, label_column='label') # Added label_column
|
|
||||||
item = loader.get_item(0)
|
|
||||||
assert isinstance(item[0], Image.Image)
|
|
||||||
assert item[1] == 0
|
|
||||||
|
|
||||||
loader.print_summary()
|
|
||||||
|
|
||||||
def test_aiia_data_loader(mocker):
|
|
||||||
# Mock Image.open to return a fake image
|
|
||||||
mock_image = Image.new('RGB', (224, 224))
|
|
||||||
mocker.patch('PIL.Image.open', return_value=mock_image)
|
|
||||||
|
|
||||||
dataset = create_sample_dataset()
|
|
||||||
data_loader = AIIADataLoader(dataset, batch_size=2, label_column='label')
|
|
||||||
|
|
||||||
# Test train loader
|
|
||||||
batch = next(iter(data_loader.train_loader))
|
|
||||||
assert isinstance(batch, list)
|
|
||||||
assert len(batch) == 2 # (images, labels)
|
|
||||||
assert batch[0].shape[0] == 1 # batch size
|
|
||||||
|
|
||||||
def test_aiia_dataset():
|
|
||||||
items = [(Image.new('RGB', (224, 224)), 0), (Image.new('RGB', (224, 224)), 1)]
|
|
||||||
dataset = AIIADataset(items)
|
|
||||||
|
|
||||||
assert len(dataset) == 2
|
|
||||||
|
|
||||||
item = dataset[0]
|
|
||||||
assert isinstance(item[0], torch.Tensor)
|
|
||||||
assert item[1] == 0
|
|
||||||
|
|
||||||
def test_aiia_dataset_pre_training():
|
|
||||||
items = [(Image.new('RGB', (224, 224)), 'denoise', Image.new('RGB', (224, 224)))]
|
|
||||||
dataset = AIIADataset(items, pretraining=True)
|
|
||||||
|
|
||||||
assert len(dataset) == 1
|
|
||||||
|
|
||||||
item = dataset[0]
|
|
||||||
assert isinstance(item[0], torch.Tensor)
|
|
||||||
assert isinstance(item[2], str)
|
|
||||||
|
|
||||||
def test_aiia_dataset_invalid_image():
|
|
||||||
items = [(Image.new('RGB', (50, 50)), 0)] # Create small image
|
|
||||||
dataset = AIIADataset(items)
|
|
||||||
|
|
||||||
with pytest.raises(ValueError, match="Invalid image dimensions"):
|
|
||||||
dataset[0]
|
|
||||||
|
|
||||||
def test_aiia_dataset_invalid_task():
|
|
||||||
items = [(Image.new('RGB', (224, 224)), 'invalid_task', Image.new('RGB', (224, 224)))]
|
|
||||||
dataset = AIIADataset(items, pretraining=True)
|
|
||||||
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
dataset[0]
|
|
||||||
|
|
||||||
def test_aiia_data_loader_invalid_column():
|
|
||||||
dataset = create_sample_dataset()
|
|
||||||
with pytest.raises(ValueError, match="Column 'invalid_column' not found"):
|
|
||||||
AIIADataLoader(dataset, column='invalid_column')
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
pytest.main(['-v'])
|
|
|
@ -1,133 +0,0 @@
|
||||||
import os
|
|
||||||
import torch
|
|
||||||
from aiia import AIIABase, AIIABaseShared, AIIAExpert, AIIAmoe, AIIAchunked, AIIAConfig
|
|
||||||
|
|
||||||
def test_aiiabase_creation():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIABase(config)
|
|
||||||
assert isinstance(model, AIIABase)
|
|
||||||
|
|
||||||
def test_aiiabase_save_load():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIABase(config)
|
|
||||||
save_path = "test_aiiabase_save_load"
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
model.save(save_path)
|
|
||||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
|
||||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
|
||||||
|
|
||||||
# Load the model
|
|
||||||
loaded_model = AIIABase.load(save_path)
|
|
||||||
|
|
||||||
# Check if the loaded model is an instance of AIIABase
|
|
||||||
assert isinstance(loaded_model, AIIABase)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
os.remove(os.path.join(save_path, "model.pth"))
|
|
||||||
os.remove(os.path.join(save_path, "config.json"))
|
|
||||||
os.rmdir(save_path)
|
|
||||||
|
|
||||||
def test_aiiabase_shared_creation():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIABaseShared(config)
|
|
||||||
assert isinstance(model, AIIABaseShared)
|
|
||||||
|
|
||||||
def test_aiiabase_shared_save_load():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIABaseShared(config)
|
|
||||||
save_path = "test_aiiabase_shared_save_load"
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
model.save(save_path)
|
|
||||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
|
||||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
|
||||||
|
|
||||||
# Load the model
|
|
||||||
loaded_model = AIIABaseShared.load(save_path)
|
|
||||||
|
|
||||||
# Check if the loaded model is an instance of AIIABaseShared
|
|
||||||
assert isinstance(loaded_model, AIIABaseShared)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
os.remove(os.path.join(save_path, "model.pth"))
|
|
||||||
os.remove(os.path.join(save_path, "config.json"))
|
|
||||||
os.rmdir(save_path)
|
|
||||||
|
|
||||||
def test_aiiaexpert_creation():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIAExpert(config)
|
|
||||||
assert isinstance(model, AIIAExpert)
|
|
||||||
|
|
||||||
def test_aiiaexpert_save_load():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIAExpert(config)
|
|
||||||
save_path = "test_aiiaexpert_save_load"
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
model.save(save_path)
|
|
||||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
|
||||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
|
||||||
|
|
||||||
# Load the model
|
|
||||||
loaded_model = AIIAExpert.load(save_path)
|
|
||||||
|
|
||||||
# Check if the loaded model is an instance of AIIAExpert
|
|
||||||
assert isinstance(loaded_model, AIIAExpert)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
os.remove(os.path.join(save_path, "model.pth"))
|
|
||||||
os.remove(os.path.join(save_path, "config.json"))
|
|
||||||
os.rmdir(save_path)
|
|
||||||
|
|
||||||
def test_aiiamoe_creation():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIAmoe(config, num_experts=5)
|
|
||||||
assert isinstance(model, AIIAmoe)
|
|
||||||
|
|
||||||
def test_aiiamoe_save_load():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIAmoe(config, num_experts=5)
|
|
||||||
save_path = "test_aiiamoe_save_load"
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
model.save(save_path)
|
|
||||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
|
||||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
|
||||||
|
|
||||||
# Load the model
|
|
||||||
loaded_model = AIIAmoe.load(save_path)
|
|
||||||
|
|
||||||
# Check if the loaded model is an instance of AIIAmoe
|
|
||||||
assert isinstance(loaded_model, AIIAmoe)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
os.remove(os.path.join(save_path, "model.pth"))
|
|
||||||
os.remove(os.path.join(save_path, "config.json"))
|
|
||||||
os.rmdir(save_path)
|
|
||||||
|
|
||||||
def test_aiiachunked_creation():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIAchunked(config)
|
|
||||||
assert isinstance(model, AIIAchunked)
|
|
||||||
|
|
||||||
def test_aiiachunked_save_load():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIAchunked(config)
|
|
||||||
save_path = "test_aiiachunked_save_load"
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
model.save(save_path)
|
|
||||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
|
||||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
|
||||||
|
|
||||||
# Load the model
|
|
||||||
loaded_model = AIIAchunked.load(save_path)
|
|
||||||
|
|
||||||
# Check if the loaded model is an instance of AIIAchunked
|
|
||||||
assert isinstance(loaded_model, AIIAchunked)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
os.remove(os.path.join(save_path, "model.pth"))
|
|
||||||
os.remove(os.path.join(save_path, "config.json"))
|
|
||||||
os.rmdir(save_path)
|
|
|
@ -1,75 +0,0 @@
|
||||||
import os
|
|
||||||
import tempfile
|
|
||||||
import pytest
|
|
||||||
import torch.nn as nn
|
|
||||||
from aiia import AIIAConfig
|
|
||||||
|
|
||||||
def test_aiia_config_initialization():
|
|
||||||
config = AIIAConfig()
|
|
||||||
assert config.model_name == "AIIA"
|
|
||||||
assert config.kernel_size == 3
|
|
||||||
assert config.activation_function == "GELU"
|
|
||||||
assert config.hidden_size == 512
|
|
||||||
assert config.num_hidden_layers == 12
|
|
||||||
assert config.num_channels == 3
|
|
||||||
assert config.learning_rate == 5e-5
|
|
||||||
|
|
||||||
def test_aiia_config_custom_initialization():
|
|
||||||
config = AIIAConfig(
|
|
||||||
model_name="CustomModel",
|
|
||||||
kernel_size=5,
|
|
||||||
activation_function="ReLU",
|
|
||||||
hidden_size=1024,
|
|
||||||
num_hidden_layers=8,
|
|
||||||
num_channels=1,
|
|
||||||
learning_rate=1e-4
|
|
||||||
)
|
|
||||||
assert config.model_name == "CustomModel"
|
|
||||||
assert config.kernel_size == 5
|
|
||||||
assert config.activation_function == "ReLU"
|
|
||||||
assert config.hidden_size == 1024
|
|
||||||
assert config.num_hidden_layers == 8
|
|
||||||
assert config.num_channels == 1
|
|
||||||
assert config.learning_rate == 1e-4
|
|
||||||
|
|
||||||
def test_aiia_config_invalid_activation_function():
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
AIIAConfig(activation_function="InvalidFunction")
|
|
||||||
|
|
||||||
def test_aiia_config_to_dict():
|
|
||||||
config = AIIAConfig()
|
|
||||||
config_dict = config.to_dict()
|
|
||||||
assert isinstance(config_dict, dict)
|
|
||||||
assert config_dict["model_name"] == "AIIA"
|
|
||||||
assert config_dict["kernel_size"] == 3
|
|
||||||
|
|
||||||
def test_aiia_config_save_and_load():
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
|
||||||
config = AIIAConfig(model_name="TempModel")
|
|
||||||
save_path = os.path.join(tmpdir, "config")
|
|
||||||
config.save(save_path)
|
|
||||||
|
|
||||||
loaded_config = AIIAConfig.load(save_path)
|
|
||||||
assert loaded_config.model_name == "TempModel"
|
|
||||||
assert loaded_config.kernel_size == 3
|
|
||||||
assert loaded_config.activation_function == "GELU"
|
|
||||||
|
|
||||||
def test_aiia_config_save_and_load_with_custom_attributes():
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
|
||||||
config = AIIAConfig(model_name="TempModel", custom_attr="value")
|
|
||||||
save_path = os.path.join(tmpdir, "config")
|
|
||||||
config.save(save_path)
|
|
||||||
|
|
||||||
loaded_config = AIIAConfig.load(save_path)
|
|
||||||
assert loaded_config.model_name == "TempModel"
|
|
||||||
assert loaded_config.custom_attr == "value"
|
|
||||||
|
|
||||||
def test_aiia_config_save_and_load_with_nested_attributes():
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
|
||||||
config = AIIAConfig(model_name="TempModel", nested={"key": "value"})
|
|
||||||
save_path = os.path.join(tmpdir, "config")
|
|
||||||
config.save(save_path)
|
|
||||||
|
|
||||||
loaded_config = AIIAConfig.load(save_path)
|
|
||||||
assert loaded_config.model_name == "TempModel"
|
|
||||||
assert loaded_config.nested == {"key": "value"}
|
|
|
@ -1,308 +0,0 @@
|
||||||
import pytest
|
|
||||||
import torch
|
|
||||||
from unittest.mock import MagicMock, patch, MagicMock, mock_open, call
|
|
||||||
from aiia import Pretrainer, ProjectionHead, AIIABase, AIIAConfig
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
# Test the ProjectionHead class
|
|
||||||
def test_projection_head():
|
|
||||||
head = ProjectionHead(hidden_size=512)
|
|
||||||
x = torch.randn(1, 512, 32, 32)
|
|
||||||
|
|
||||||
# Test denoise task
|
|
||||||
output_denoise = head(x, task='denoise')
|
|
||||||
assert output_denoise.shape == (1, 3, 32, 32)
|
|
||||||
|
|
||||||
# Test rotate task
|
|
||||||
output_rotate = head(x, task='rotate')
|
|
||||||
assert output_rotate.shape == (1, 4)
|
|
||||||
|
|
||||||
# Test the Pretrainer class initialization
|
|
||||||
def test_pretrainer_initialization():
|
|
||||||
config = AIIAConfig()
|
|
||||||
model = AIIABase(config=config)
|
|
||||||
pretrainer = Pretrainer(model=model, learning_rate=0.001, config=config)
|
|
||||||
assert pretrainer.device in ["cuda", "cpu"]
|
|
||||||
assert isinstance(pretrainer.projection_head, ProjectionHead)
|
|
||||||
assert isinstance(pretrainer.optimizer, torch.optim.AdamW)
|
|
||||||
|
|
||||||
# Test the safe_collate method
|
|
||||||
def test_safe_collate():
|
|
||||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
|
||||||
batch = [
|
|
||||||
(torch.randn(3, 32, 32), torch.randn(3, 32, 32), 'denoise'),
|
|
||||||
(torch.randn(3, 32, 32), torch.tensor(1), 'rotate')
|
|
||||||
]
|
|
||||||
|
|
||||||
collated_batch = pretrainer.safe_collate(batch)
|
|
||||||
assert 'denoise' in collated_batch
|
|
||||||
assert 'rotate' in collated_batch
|
|
||||||
|
|
||||||
# Test the _process_batch method
|
|
||||||
@patch('aiia.pretrain.pretrainer.Pretrainer._process_batch')
|
|
||||||
def test_process_batch(mock_process_batch):
|
|
||||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
|
||||||
batch_data = {
|
|
||||||
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
|
|
||||||
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
|
|
||||||
}
|
|
||||||
criterion_denoise = MagicMock()
|
|
||||||
criterion_rotate = MagicMock()
|
|
||||||
|
|
||||||
mock_process_batch.return_value = 0.5
|
|
||||||
loss = pretrainer._process_batch(batch_data, criterion_denoise, criterion_rotate)
|
|
||||||
assert loss == 0.5
|
|
||||||
|
|
||||||
@patch('pandas.concat')
|
|
||||||
@patch('pandas.read_parquet')
|
|
||||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
|
||||||
@patch('os.path.join', return_value='mocked/path/model.pt')
|
|
||||||
@patch('builtins.print') # Add this to mock the print function
|
|
||||||
def test_train_happy_path(mock_print, mock_path_join, mock_data_loader, mock_read_parquet, mock_concat):
|
|
||||||
"""Test the train method under normal conditions with comprehensive verification."""
|
|
||||||
# Setup test data and mocks
|
|
||||||
real_df = pd.DataFrame({
|
|
||||||
'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]
|
|
||||||
})
|
|
||||||
mock_read_parquet.return_value.head.return_value = real_df
|
|
||||||
mock_concat.return_value = real_df
|
|
||||||
|
|
||||||
# Mock the model and related components
|
|
||||||
mock_model = MagicMock()
|
|
||||||
mock_projection_head = MagicMock()
|
|
||||||
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
|
|
||||||
pretrainer.projection_head = mock_projection_head
|
|
||||||
pretrainer.optimizer = MagicMock()
|
|
||||||
|
|
||||||
# Setup dataset paths and mock batch data
|
|
||||||
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
|
|
||||||
output_path = "AIIA_test"
|
|
||||||
|
|
||||||
# Create mock batch data with proper structure
|
|
||||||
mock_batch_data = {
|
|
||||||
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
|
|
||||||
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
|
|
||||||
}
|
|
||||||
|
|
||||||
# Configure batch loss
|
|
||||||
mock_batch_loss = torch.tensor(0.5, requires_grad=True)
|
|
||||||
loader_instance = MagicMock()
|
|
||||||
loader_instance.train_loader = [mock_batch_data]
|
|
||||||
loader_instance.val_loader = [mock_batch_data]
|
|
||||||
mock_data_loader.return_value = loader_instance
|
|
||||||
|
|
||||||
# Execute training with patched methods
|
|
||||||
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss) as mock_process_batch, \
|
|
||||||
patch.object(Pretrainer, '_validate', side_effect=[0.8, 0.3]) as mock_validate, \
|
|
||||||
patch.object(Pretrainer, 'save_losses') as mock_save_losses, \
|
|
||||||
patch('builtins.open', mock_open()):
|
|
||||||
|
|
||||||
pretrainer.train(dataset_paths, output_path=output_path, num_epochs=2)
|
|
||||||
|
|
||||||
# Verify method calls
|
|
||||||
assert mock_read_parquet.call_count == len(dataset_paths)
|
|
||||||
assert mock_process_batch.call_count == 2
|
|
||||||
assert mock_validate.call_count == 2
|
|
||||||
|
|
||||||
# Check for "Best model saved!" instead of model.save()
|
|
||||||
mock_print.assert_any_call("Best model saved!")
|
|
||||||
|
|
||||||
mock_save_losses.assert_called_once()
|
|
||||||
|
|
||||||
# Verify state changes
|
|
||||||
assert len(pretrainer.train_losses) == 2
|
|
||||||
assert pretrainer.train_losses == [0.5, 0.5]
|
|
||||||
|
|
||||||
|
|
||||||
# Error cases
|
|
||||||
def test_train_no_dataset_paths():
|
|
||||||
"""Test ValueError when no dataset paths are provided."""
|
|
||||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
|
||||||
|
|
||||||
with pytest.raises(ValueError, match="No dataset paths provided"):
|
|
||||||
pretrainer.train([])
|
|
||||||
|
|
||||||
@patch('pandas.read_parquet')
|
|
||||||
def test_train_all_datasets_fail(mock_read_parquet):
|
|
||||||
"""Test handling when all datasets fail to load."""
|
|
||||||
mock_read_parquet.side_effect = Exception("Failed to load dataset")
|
|
||||||
|
|
||||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
|
||||||
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
|
|
||||||
|
|
||||||
with pytest.raises(ValueError, match="No valid datasets could be loaded"):
|
|
||||||
pretrainer.train(dataset_paths)
|
|
||||||
|
|
||||||
# Edge cases
|
|
||||||
@patch('pandas.concat')
|
|
||||||
@patch('pandas.read_parquet')
|
|
||||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
|
||||||
def test_train_empty_loaders(mock_data_loader, mock_read_parquet, mock_concat):
|
|
||||||
"""Test behavior with empty data loaders."""
|
|
||||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
|
||||||
mock_read_parquet.return_value.head.return_value = real_df
|
|
||||||
mock_concat.return_value = real_df
|
|
||||||
|
|
||||||
loader_instance = MagicMock()
|
|
||||||
loader_instance.train_loader = [] # Empty train loader
|
|
||||||
loader_instance.val_loader = [] # Empty val loader
|
|
||||||
mock_data_loader.return_value = loader_instance
|
|
||||||
|
|
||||||
mock_model = MagicMock()
|
|
||||||
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
|
|
||||||
pretrainer.projection_head = MagicMock()
|
|
||||||
pretrainer.optimizer = MagicMock()
|
|
||||||
|
|
||||||
with patch.object(Pretrainer, 'save_losses') as mock_save_losses:
|
|
||||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=1)
|
|
||||||
|
|
||||||
# Verify empty loader behavior
|
|
||||||
assert len(pretrainer.train_losses) == 1
|
|
||||||
assert pretrainer.train_losses[0] == 0.0
|
|
||||||
mock_save_losses.assert_called_once()
|
|
||||||
|
|
||||||
@patch('pandas.concat')
|
|
||||||
@patch('pandas.read_parquet')
|
|
||||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
|
||||||
def test_train_none_batch_data(mock_data_loader, mock_read_parquet, mock_concat):
|
|
||||||
"""Test behavior when batch_data is None."""
|
|
||||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
|
||||||
mock_read_parquet.return_value.head.return_value = real_df
|
|
||||||
mock_concat.return_value = real_df
|
|
||||||
|
|
||||||
loader_instance = MagicMock()
|
|
||||||
loader_instance.train_loader = [None] # Loader returns None
|
|
||||||
loader_instance.val_loader = []
|
|
||||||
mock_data_loader.return_value = loader_instance
|
|
||||||
|
|
||||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
|
||||||
pretrainer.projection_head = MagicMock()
|
|
||||||
pretrainer.optimizer = MagicMock()
|
|
||||||
|
|
||||||
with patch.object(Pretrainer, '_process_batch') as mock_process_batch, \
|
|
||||||
patch.object(Pretrainer, 'save_losses'):
|
|
||||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=1)
|
|
||||||
|
|
||||||
# Verify None batch handling
|
|
||||||
mock_process_batch.assert_not_called()
|
|
||||||
assert pretrainer.train_losses[0] == 0.0
|
|
||||||
|
|
||||||
# Parameter variations
|
|
||||||
@patch('pandas.concat')
|
|
||||||
@patch('pandas.read_parquet')
|
|
||||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
|
||||||
def test_train_with_custom_parameters(mock_data_loader, mock_read_parquet, mock_concat):
|
|
||||||
"""Test that custom parameters are properly passed through."""
|
|
||||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
|
||||||
mock_read_parquet.return_value.head.return_value = real_df
|
|
||||||
mock_concat.return_value = real_df
|
|
||||||
|
|
||||||
loader_instance = MagicMock()
|
|
||||||
loader_instance.train_loader = []
|
|
||||||
loader_instance.val_loader = []
|
|
||||||
mock_data_loader.return_value = loader_instance
|
|
||||||
|
|
||||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
|
||||||
pretrainer.projection_head = MagicMock()
|
|
||||||
pretrainer.optimizer = MagicMock()
|
|
||||||
|
|
||||||
# Custom parameters
|
|
||||||
custom_output_path = "custom/output/path"
|
|
||||||
custom_column = "custom_column"
|
|
||||||
custom_batch_size = 16
|
|
||||||
custom_sample_size = 5000
|
|
||||||
|
|
||||||
with patch.object(Pretrainer, 'save_losses'):
|
|
||||||
pretrainer.train(
|
|
||||||
['path/to/dataset.parquet'],
|
|
||||||
output_path=custom_output_path,
|
|
||||||
column=custom_column,
|
|
||||||
batch_size=custom_batch_size,
|
|
||||||
sample_size=custom_sample_size
|
|
||||||
)
|
|
||||||
|
|
||||||
# Verify custom parameters were used
|
|
||||||
mock_read_parquet.return_value.head.assert_called_once_with(custom_sample_size)
|
|
||||||
assert mock_data_loader.call_args[1]['column'] == custom_column
|
|
||||||
assert mock_data_loader.call_args[1]['batch_size'] == custom_batch_size
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@patch('pandas.concat')
|
|
||||||
@patch('pandas.read_parquet')
|
|
||||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
|
||||||
@patch('builtins.print') # Add this to mock the print function
|
|
||||||
def test_train_validation_loss_improvement(mock_print, mock_data_loader, mock_read_parquet, mock_concat):
|
|
||||||
"""Test that model is saved only when validation loss improves."""
|
|
||||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
|
||||||
mock_read_parquet.return_value.head.return_value = real_df
|
|
||||||
mock_concat.return_value = real_df
|
|
||||||
|
|
||||||
# Create mock batch data with proper structure
|
|
||||||
mock_batch_data = {
|
|
||||||
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
|
|
||||||
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
|
|
||||||
}
|
|
||||||
|
|
||||||
loader_instance = MagicMock()
|
|
||||||
loader_instance.train_loader = [mock_batch_data]
|
|
||||||
loader_instance.val_loader = [mock_batch_data]
|
|
||||||
mock_data_loader.return_value = loader_instance
|
|
||||||
|
|
||||||
mock_model = MagicMock()
|
|
||||||
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
|
|
||||||
pretrainer.projection_head = MagicMock()
|
|
||||||
pretrainer.optimizer = MagicMock()
|
|
||||||
|
|
||||||
# Initialize the best validation loss
|
|
||||||
pretrainer.best_val_loss = float('inf')
|
|
||||||
|
|
||||||
mock_batch_loss = torch.tensor(0.5, requires_grad=True)
|
|
||||||
|
|
||||||
# Test improving validation loss
|
|
||||||
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss), \
|
|
||||||
patch.object(Pretrainer, '_validate', side_effect=[3.0, 2.0, 1.0]), \
|
|
||||||
patch.object(Pretrainer, 'save_losses'):
|
|
||||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=3)
|
|
||||||
|
|
||||||
# Check for "Best model saved!" 3 times
|
|
||||||
assert mock_print.call_args_list.count(call("Best model saved!")) == 3
|
|
||||||
|
|
||||||
# Reset for next test
|
|
||||||
mock_print.reset_mock()
|
|
||||||
pretrainer.train_losses = []
|
|
||||||
|
|
||||||
# Reset best validation loss for the second test
|
|
||||||
pretrainer.best_val_loss = float('inf')
|
|
||||||
|
|
||||||
# Test fluctuating validation loss
|
|
||||||
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss), \
|
|
||||||
patch.object(Pretrainer, '_validate', side_effect=[3.0, 4.0, 2.0]), \
|
|
||||||
patch.object(Pretrainer, 'save_losses'):
|
|
||||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=3)
|
|
||||||
|
|
||||||
# Should print "Best model saved!" only on first and third epochs
|
|
||||||
assert mock_print.call_args_list.count(call("Best model saved!")) == 2
|
|
||||||
|
|
||||||
|
|
||||||
@patch('aiia.pretrain.pretrainer.Pretrainer._process_batch')
|
|
||||||
def test_validate(mock_process_batch):
|
|
||||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
|
||||||
val_loader = [MagicMock()]
|
|
||||||
criterion_denoise = MagicMock()
|
|
||||||
criterion_rotate = MagicMock()
|
|
||||||
|
|
||||||
mock_process_batch.return_value = torch.tensor(0.5)
|
|
||||||
loss = pretrainer._validate(val_loader, criterion_denoise, criterion_rotate)
|
|
||||||
assert loss == 0.5
|
|
||||||
|
|
||||||
# Test the save_losses method
|
|
||||||
@patch('aiia.pretrain.pretrainer.Pretrainer.save_losses')
|
|
||||||
def test_save_losses(mock_save_losses):
|
|
||||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
|
||||||
pretrainer.train_losses = [0.1, 0.2]
|
|
||||||
pretrainer.val_losses = [0.3, 0.4]
|
|
||||||
|
|
||||||
csv_file = 'losses.csv'
|
|
||||||
pretrainer.save_losses(csv_file)
|
|
||||||
mock_save_losses.assert_called_once_with(csv_file)
|
|
Loading…
Reference in New Issue