Compare commits
8 Commits
2d5fcd91d5
...
18249a852a
Author | SHA1 | Date |
---|---|---|
|
18249a852a | |
|
fb1b25507c | |
|
5987a130f6 | |
|
458d78a23e | |
|
c0e36cd579 | |
|
10967ea880 | |
|
1fcb31b044 | |
|
96d8e18ee0 |
|
@ -34,4 +34,4 @@ jobs:
|
|||
VECTORDB_TOKEN: ${{ secrets.VECTORDB_TOKEN }}
|
||||
run: |
|
||||
cd VectorLoader
|
||||
python -m src.run --full
|
||||
python -m src.run
|
||||
|
|
|
@ -10,7 +10,7 @@ include = '\.pyi?$'
|
|||
|
||||
[project]
|
||||
name = "aiia"
|
||||
version = "0.2.0"
|
||||
version = "0.2.1"
|
||||
description = "AIIA Deep Learning Model Implementation"
|
||||
readme = "README.md"
|
||||
authors = [
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[metadata]
|
||||
name = aiia
|
||||
version = 0.2.0
|
||||
version = 0.2.1
|
||||
author = Falko Habel
|
||||
author_email = falko.habel@gmx.de
|
||||
description = AIIA deep learning model implementation
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from .model.Model import AIIABase, AIIABaseShared, AIIAchunked, AIIAExpert, AIIAmoe, AIIA, AIIArecursive
|
||||
from .model.Model import AIIABase, AIIABaseShared, AIIAchunked, AIIAmoe, AIIASparseMoe, AIIArecursive
|
||||
from .model.config import AIIAConfig
|
||||
from .data.DataLoader import DataLoader
|
||||
from .pretrain.pretrainer import Pretrainer, ProjectionHead
|
||||
|
||||
|
||||
__version__ = "0.2.0"
|
||||
__version__ = "0.2.1"
|
||||
|
|
|
@ -260,6 +260,40 @@ class AIIAmoe(AIIA):
|
|||
return merged_output
|
||||
|
||||
|
||||
class AIIASparseMoe(AIIAmoe):
|
||||
def __init__(self, config: AIIAConfig, num_experts: int = 3, top_k: int = 2, base_class=AIIABase, **kwargs):
|
||||
super().__init__(config=config, num_experts=num_experts, base_class=base_class, **kwargs)
|
||||
self.top_k = top_k
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
# Compute the gate_weights similar to standard moe.
|
||||
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
|
||||
spatial_avg = torch.mean(expert_outputs, dim=(3, 4))
|
||||
gate_input = torch.mean(spatial_avg, dim=1)
|
||||
gate_weights = self.gate(gate_input)
|
||||
|
||||
# Select the top-k experts for each input based on gating weights.
|
||||
_, top_k_indices = gate_weights.topk(self.top_k, dim=-1)
|
||||
|
||||
# Initialize a list to store outputs from selected experts.
|
||||
merged_outputs = []
|
||||
|
||||
# Iterate over batch dimension to apply top-k selection per instance.
|
||||
for i in range(x.size(0)):
|
||||
# Get the indices of top-k experts for current instance.
|
||||
instance_top_k_indices = top_k_indices[i]
|
||||
|
||||
# Select outputs from top-k experts.
|
||||
selected_expert_outputs = expert_outputs[i][instance_top_k_indices]
|
||||
|
||||
# Average over the selected experts to get a single output per instance.
|
||||
averaged_output = torch.mean(selected_expert_outputs, dim=0)
|
||||
merged_outputs.append(averaged_output.unsqueeze(0))
|
||||
|
||||
# Stack outputs from all instances back into a batch tensor.
|
||||
return torch.cat(merged_outputs, dim=0)
|
||||
|
||||
|
||||
class AIIAchunked(AIIA):
|
||||
def __init__(self, config: AIIAConfig, patch_size: int = 16, base_class=AIIABase, **kwargs):
|
||||
super().__init__(config=config, **kwargs)
|
||||
|
|
|
@ -1,21 +1,20 @@
|
|||
from .Model import (
|
||||
AIIA,
|
||||
AIIABase,
|
||||
AIIABaseShared,
|
||||
AIIAchunked,
|
||||
AIIAExpert,
|
||||
AIIAmoe,
|
||||
AIIASparseMoe,
|
||||
AIIArecursive
|
||||
)
|
||||
from .config import AIIAConfig
|
||||
|
||||
__all__ = [
|
||||
"AIIA",
|
||||
"AIIABase",
|
||||
"AIIABaseShared",
|
||||
"AIIAchunked",
|
||||
"AIIAExpert",
|
||||
"AIIAmoe",
|
||||
"AIIASparseMoe",
|
||||
"AIIArecursive",
|
||||
"AIIAConfig"
|
||||
"AIIAConfig",
|
||||
|
||||
]
|
|
@ -1,6 +1,6 @@
|
|||
import os
|
||||
import torch
|
||||
from aiia import AIIABase, AIIABaseShared, AIIAExpert, AIIAmoe, AIIAchunked, AIIAConfig
|
||||
from aiia.model.Model import AIIABase, AIIABaseShared, AIIAExpert, AIIAmoe, AIIAchunked, AIIAConfig, AIIASparseMoe
|
||||
|
||||
def test_aiiabase_creation():
|
||||
config = AIIAConfig()
|
||||
|
@ -106,6 +106,32 @@ def test_aiiamoe_save_load():
|
|||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
||||
|
||||
def test_aiiasparsemoe_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIASparseMoe(config, num_experts=5, top_k=2)
|
||||
assert isinstance(model, AIIASparseMoe)
|
||||
|
||||
def test_aiiasparsemoe_save_load():
|
||||
config = AIIAConfig()
|
||||
model = AIIASparseMoe(config, num_experts=3, top_k=1)
|
||||
save_path = "test_aiiasparsemoe_save_load"
|
||||
|
||||
# Save the model
|
||||
model.save(save_path)
|
||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
||||
|
||||
# Load the model
|
||||
loaded_model = AIIASparseMoe.load(save_path)
|
||||
|
||||
# Check if the loaded model is an instance of AIIASparseMoe
|
||||
assert isinstance(loaded_model, AIIASparseMoe)
|
||||
|
||||
# Clean up
|
||||
os.remove(os.path.join(save_path, "model.pth"))
|
||||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
||||
|
||||
def test_aiiachunked_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIAchunked(config)
|
||||
|
|
Loading…
Reference in New Issue