Merge pull request 'feat/bugfix' (#42) from feat/bugfix into main
Reviewed-on: #42
This commit is contained in:
commit
ff6f279728
|
@ -10,7 +10,7 @@ include = '\.pyi?$'
|
|||
|
||||
[project]
|
||||
name = "aiia"
|
||||
version = "0.3.1"
|
||||
version = "0.3.2"
|
||||
description = "AIIA Deep Learning Model Implementation"
|
||||
readme = "README.md"
|
||||
authors = [
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[metadata]
|
||||
name = aiia
|
||||
version = 0.3.1
|
||||
version = 0.3.2
|
||||
author = Falko Habel
|
||||
author_email = falko.habel@gmx.de
|
||||
description = AIIA deep learning model implementation
|
||||
|
|
|
@ -4,4 +4,4 @@ from .data.DataLoader import DataLoader
|
|||
from .pretrain.pretrainer import Pretrainer, ProjectionHead
|
||||
|
||||
|
||||
__version__ = "0.3.1"
|
||||
__version__ = "0.3.2"
|
||||
|
|
|
@ -42,6 +42,8 @@ class Pretrainer:
|
|||
)
|
||||
self.train_losses = []
|
||||
self.val_losses = []
|
||||
self.checkpoint_dir = None # Initialize checkpoint_dir
|
||||
self.current_epoch = 0 # Add current_epoch tracking
|
||||
|
||||
@staticmethod
|
||||
def safe_collate(batch):
|
||||
|
@ -140,8 +142,7 @@ class Pretrainer:
|
|||
return checkpoint_path
|
||||
|
||||
def load_checkpoint(self, checkpoint_dir, specific_checkpoint=None):
|
||||
"""
|
||||
Check for checkpoints and load if available.
|
||||
"""Check for checkpoints and load if available.
|
||||
|
||||
Args:
|
||||
checkpoint_dir (str): Directory where checkpoints are stored
|
||||
|
@ -177,8 +178,7 @@ class Pretrainer:
|
|||
return self._load_checkpoint_file(checkpoint_path)
|
||||
|
||||
def _load_checkpoint_file(self, checkpoint_path):
|
||||
"""
|
||||
Load a specific checkpoint file.
|
||||
"""Load a specific checkpoint file.
|
||||
|
||||
Args:
|
||||
checkpoint_path (str): Path to the checkpoint file
|
||||
|
@ -214,13 +214,13 @@ class Pretrainer:
|
|||
print(f"Error loading checkpoint: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def train(self, dataset_paths, output_path="AIIA", column="image_bytes",
|
||||
num_epochs=3, batch_size=2, sample_size=10000, checkpoint_dir=None):
|
||||
"""Train the model using multiple specified datasets with checkpoint resumption support."""
|
||||
if not dataset_paths:
|
||||
raise ValueError("No dataset paths provided")
|
||||
|
||||
self.checkpoint_dir = checkpoint_dir # Set checkpoint_dir class variable
|
||||
self._initialize_checkpoint_variables()
|
||||
start_epoch, start_batch, resume_training = self._load_checkpoints(checkpoint_dir)
|
||||
|
||||
|
@ -230,6 +230,7 @@ class Pretrainer:
|
|||
criterion_denoise, criterion_rotate, best_val_loss = self._initialize_loss_functions()
|
||||
|
||||
for epoch in range(start_epoch, num_epochs):
|
||||
self.current_epoch = epoch # Update current_epoch
|
||||
print(f"\nEpoch {epoch+1}/{num_epochs}")
|
||||
print("-" * 20)
|
||||
total_train_loss, batch_count = self._training_phase(aiia_loader.train_loader,
|
||||
|
@ -393,7 +394,6 @@ class Pretrainer:
|
|||
print(f"Validation Loss: {avg_val_loss:.4f}")
|
||||
return avg_val_loss
|
||||
|
||||
|
||||
def save_losses(self, csv_file):
|
||||
"""Save training and validation losses to a CSV file."""
|
||||
data = list(zip(
|
||||
|
|
Loading…
Reference in New Issue