corrected viewing and some prints

This commit is contained in:
Falko Victor Habel 2025-01-27 10:26:28 +01:00
parent b6b63851ca
commit fe4d6b5b22
1 changed files with 26 additions and 1 deletions

View File

@ -6,7 +6,6 @@ from aiia.model import AIIABase
from aiia.data.DataLoader import AIIADataLoader from aiia.data.DataLoader import AIIADataLoader
from tqdm import tqdm from tqdm import tqdm
def pretrain_model(data_path1, data_path2, num_epochs=3): def pretrain_model(data_path1, data_path2, num_epochs=3):
# Read and merge datasets # Read and merge datasets
df1 = pd.read_parquet(data_path1).head(10000) df1 = pd.read_parquet(data_path1).head(10000)
@ -108,7 +107,19 @@ def pretrain_model(data_path1, data_path2, num_epochs=3):
noisy_imgs = noisy_imgs.to(device) noisy_imgs = noisy_imgs.to(device)
targets = targets.to(device) targets = targets.to(device)
# Print shapes for debugging
print(f"\nDenoising task shapes:")
print(f"Input shape: {noisy_imgs.shape}")
print(f"Target shape: {targets.shape}")
outputs = model(noisy_imgs) outputs = model(noisy_imgs)
print(f"Raw output shape: {outputs.shape}")
# Reshape output to match target dimensions
batch_size = targets.size(0)
outputs = outputs.view(batch_size, 3, 224, 224)
print(f"Reshaped output shape: {outputs.shape}")
loss = criterion_denoise(outputs, targets) loss = criterion_denoise(outputs, targets)
batch_loss += loss batch_loss += loss
@ -118,7 +129,18 @@ def pretrain_model(data_path1, data_path2, num_epochs=3):
imgs = imgs.to(device) imgs = imgs.to(device)
targets = targets.long().to(device) targets = targets.long().to(device)
# Print shapes for debugging
print(f"\nRotation task shapes:")
print(f"Input shape: {imgs.shape}")
print(f"Target shape: {targets.shape}")
outputs = model(imgs) outputs = model(imgs)
print(f"Raw output shape: {outputs.shape}")
# Reshape output for rotation classification
outputs = outputs.view(targets.size(0), -1) # Flatten to [batch_size, features]
print(f"Reshaped output shape: {outputs.shape}")
loss = criterion_rotate(outputs, targets) loss = criterion_rotate(outputs, targets)
batch_loss += loss batch_loss += loss
@ -150,6 +172,8 @@ def pretrain_model(data_path1, data_path2, num_epochs=3):
targets = targets.to(device) targets = targets.to(device)
outputs = model(noisy_imgs) outputs = model(noisy_imgs)
batch_size = targets.size(0)
outputs = outputs.view(batch_size, 3, 224, 224)
loss = criterion_denoise(outputs, targets) loss = criterion_denoise(outputs, targets)
batch_loss += loss batch_loss += loss
@ -160,6 +184,7 @@ def pretrain_model(data_path1, data_path2, num_epochs=3):
targets = targets.long().to(device) targets = targets.long().to(device)
outputs = model(imgs) outputs = model(imgs)
outputs = outputs.view(targets.size(0), -1)
loss = criterion_rotate(outputs, targets) loss = criterion_rotate(outputs, targets)
batch_loss += loss batch_loss += loss