Merge pull request 'feat/tests' (#32) from feat/tests into main
Reviewed-on: #32
This commit is contained in:
commit
e0b3cfb20f
|
@ -0,0 +1,10 @@
|
|||
[run]
|
||||
branch = True
|
||||
source = src
|
||||
omit =
|
||||
*/tests/*
|
||||
*/migrations/*
|
||||
|
||||
[report]
|
||||
show_missing = True
|
||||
fail_under = 80
|
|
@ -0,0 +1,36 @@
|
|||
name: Run VectorLoader Script
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
Explore-Gitea-Actions:
|
||||
runs-on: ubuntu-latest
|
||||
container: catthehacker/ubuntu:act-latest
|
||||
steps:
|
||||
- name: Check out repository code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: '3.11.7'
|
||||
|
||||
- name: Clone additional repository
|
||||
run: |
|
||||
git config --global credential.helper cache
|
||||
git clone https://fabel:${{ secrets.CICD }}@gitea.fabelous.app/fabel/VectorLoader.git
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
cd VectorLoader
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Run vectorizing
|
||||
env:
|
||||
VECTORDB_TOKEN: ${{ secrets.VECTORDB_TOKEN }}
|
||||
run: |
|
||||
python -m src.run --full
|
|
@ -0,0 +1,37 @@
|
|||
name: Gitea Actions For AIIA
|
||||
run-name: ${{ gitea.actor }} is testing out Gitea Actions 🚀
|
||||
on: [push]
|
||||
|
||||
jobs:
|
||||
Explore-Gitea-Actions:
|
||||
runs-on: ubuntu-latest
|
||||
container: catthehacker/ubuntu:act-latest
|
||||
steps:
|
||||
- name: Check out repository code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11.7'
|
||||
|
||||
- name: Cache pip and model
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: |
|
||||
~/.cache/pip
|
||||
./fabel
|
||||
key: ${{ runner.os }}-pip-model-${{ hashFiles('requirements.txt', 'requirements-dev.txt') }}
|
||||
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-model-
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
pip install -r requirements-dev.txt
|
||||
pip install -e .
|
||||
- name: Run tests
|
||||
run: |
|
||||
pytest tests/
|
|
@ -10,7 +10,7 @@ include = '\.pyi?$'
|
|||
|
||||
[project]
|
||||
name = "aiia"
|
||||
version = "0.1.6"
|
||||
version = "0.2.0"
|
||||
description = "AIIA Deep Learning Model Implementation"
|
||||
readme = "README.md"
|
||||
authors = [
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
[pytest]
|
||||
testpaths = tests/
|
||||
python_files = test_*.py
|
|
@ -0,0 +1,2 @@
|
|||
pytest
|
||||
pytest-mock
|
|
@ -1,6 +1,6 @@
|
|||
[metadata]
|
||||
name = aiia
|
||||
version = 0.1.6
|
||||
version = 0.2.0
|
||||
author = Falko Habel
|
||||
author_email = falko.habel@gmx.de
|
||||
description = AIIA deep learning model implementation
|
||||
|
|
|
@ -4,4 +4,4 @@ from .data.DataLoader import DataLoader
|
|||
from .pretrain.pretrainer import Pretrainer, ProjectionHead
|
||||
|
||||
|
||||
__version__ = "0.1.6"
|
||||
__version__ = "0.2.0"
|
||||
|
|
|
@ -15,7 +15,7 @@ class FilePathLoader:
|
|||
self.successful_count = 0
|
||||
self.skipped_count = 0
|
||||
|
||||
if self.file_path_column not in dataset.column_names:
|
||||
if self.file_path_column not in dataset.columns:
|
||||
raise ValueError(f"Column '{self.file_path_column}' not found in dataset.")
|
||||
|
||||
def _get_image(self, item):
|
||||
|
@ -106,7 +106,11 @@ class JPGImageLoader:
|
|||
print(f"Skipped {self.skipped_count} images due to errors.")
|
||||
|
||||
class AIIADataLoader:
|
||||
def __init__(self, dataset, batch_size=32, val_split=0.2, seed=42, column="file_path", label_column=None, pretraining=False, **dataloader_kwargs):
|
||||
def __init__(self, dataset, batch_size=32, val_split=0.2, seed=42, column="file_path",
|
||||
label_column=None, pretraining=False, **dataloader_kwargs):
|
||||
if column not in dataset.columns:
|
||||
raise ValueError(f"Column '{column}' not found in dataset")
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.val_split = val_split
|
||||
self.seed = seed
|
||||
|
@ -145,7 +149,6 @@ class AIIADataLoader:
|
|||
if not self.items:
|
||||
raise ValueError("No valid items were loaded from the dataset")
|
||||
|
||||
|
||||
train_indices, val_indices = self._split_data()
|
||||
|
||||
self.train_dataset = self._create_subset(train_indices)
|
||||
|
@ -192,9 +195,11 @@ class AIIADataset(torch.utils.data.Dataset):
|
|||
if not isinstance(image, Image.Image):
|
||||
raise ValueError(f"Invalid image at index {idx}")
|
||||
|
||||
# Check image dimensions before transform
|
||||
if image.size[0] < 224 or image.size[1] < 224:
|
||||
raise ValueError("Invalid image dimensions")
|
||||
|
||||
image = self.transform(image)
|
||||
if image.shape != (3, 224, 224):
|
||||
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||
|
||||
if task == 'denoise':
|
||||
noise_std = 0.1
|
||||
|
@ -214,15 +219,20 @@ class AIIADataset(torch.utils.data.Dataset):
|
|||
image, label = item
|
||||
if not isinstance(image, Image.Image):
|
||||
raise ValueError(f"Invalid image at index {idx}")
|
||||
|
||||
# Check image dimensions before transform
|
||||
if image.size[0] < 224 or image.size[1] < 224:
|
||||
raise ValueError("Invalid image dimensions")
|
||||
|
||||
image = self.transform(image)
|
||||
if image.shape != (3, 224, 224):
|
||||
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||
return image, label
|
||||
else:
|
||||
if isinstance(item, Image.Image):
|
||||
image = self.transform(item)
|
||||
else:
|
||||
image = self.transform(item[0])
|
||||
if image.shape != (3, 224, 224):
|
||||
raise ValueError(f"Invalid image shape at index {idx}: {image.shape}")
|
||||
image = item[0] if isinstance(item, tuple) else item
|
||||
if not isinstance(image, Image.Image):
|
||||
raise ValueError(f"Invalid image at index {idx}")
|
||||
|
||||
# Check image dimensions before transform
|
||||
if image.size[0] < 224 or image.size[1] < 224:
|
||||
raise ValueError("Invalid image dimensions")
|
||||
image = self.transform(image)
|
||||
return image
|
||||
|
|
|
@ -23,12 +23,36 @@ class AIIA(nn.Module):
|
|||
self.config.save(path)
|
||||
|
||||
@classmethod
|
||||
def load(cls, path, precision: str = None, **kwargs):
|
||||
def load(cls, path, precision: str = None, strict: bool = True, **kwargs):
|
||||
config = AIIAConfig.load(path)
|
||||
model = cls(config, **kwargs) # Pass kwargs here!
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
dtype = None
|
||||
|
||||
# Load the state dict to analyze structure
|
||||
model_dict = torch.load(f"{path}/model.pth", map_location=device)
|
||||
|
||||
# Special handling for AIIAmoe - detect number of experts from state_dict
|
||||
if cls.__name__ == "AIIAmoe" and "num_experts" not in kwargs:
|
||||
# Find maximum expert index
|
||||
max_expert_idx = -1
|
||||
for key in model_dict.keys():
|
||||
if key.startswith("experts."):
|
||||
parts = key.split(".")
|
||||
if len(parts) > 1:
|
||||
try:
|
||||
expert_idx = int(parts[1])
|
||||
max_expert_idx = max(max_expert_idx, expert_idx)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
if max_expert_idx >= 0:
|
||||
# experts.X keys found, use max_expert_idx + 1 as num_experts
|
||||
kwargs["num_experts"] = max_expert_idx + 1
|
||||
|
||||
# Create model with detected structural parameters
|
||||
model = cls(config, **kwargs)
|
||||
|
||||
# Handle precision conversion
|
||||
dtype = None
|
||||
if precision is not None:
|
||||
if precision.lower() == 'fp16':
|
||||
dtype = torch.float16
|
||||
|
@ -41,13 +65,13 @@ class AIIA(nn.Module):
|
|||
else:
|
||||
raise ValueError("Unsupported precision. Use 'fp16', 'bf16', or leave as None.")
|
||||
|
||||
model_dict = torch.load(f"{path}/model.pth", map_location=device)
|
||||
if dtype is not None:
|
||||
for key, param in model_dict.items():
|
||||
if torch.is_tensor(param):
|
||||
model_dict[key] = param.to(dtype)
|
||||
|
||||
model.load_state_dict(model_dict)
|
||||
# Load state dict with strict parameter for flexibility
|
||||
model.load_state_dict(model_dict, strict=strict)
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,112 @@
|
|||
import pytest
|
||||
from PIL import Image
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision import transforms
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from aiia.data.DataLoader import FilePathLoader, JPGImageLoader, AIIADataLoader, AIIADataset
|
||||
|
||||
def create_sample_dataset(file_paths=None):
|
||||
if file_paths is None:
|
||||
file_paths = ['path/to/image1.jpg', 'path/to/image2.png']
|
||||
|
||||
data = {
|
||||
'file_path': file_paths,
|
||||
'label': [0] * len(file_paths) # Match length of labels to file_paths
|
||||
}
|
||||
df = pd.DataFrame(data)
|
||||
return df
|
||||
|
||||
def create_sample_bytes_dataset(bytes_data=None):
|
||||
if bytes_data is None:
|
||||
bytes_data = [b'fake_image_data_1', b'fake_image_data_2']
|
||||
|
||||
data = {
|
||||
'jpg': bytes_data,
|
||||
'label': [0] * len(bytes_data) # Match length of labels to bytes_data
|
||||
}
|
||||
df = pd.DataFrame(data)
|
||||
return df
|
||||
|
||||
def test_file_path_loader(mocker):
|
||||
# Mock Image.open to return a fake image
|
||||
mock_image = Image.new('RGB', (224, 224))
|
||||
mocker.patch('PIL.Image.open', return_value=mock_image)
|
||||
|
||||
dataset = create_sample_dataset()
|
||||
loader = FilePathLoader(dataset, label_column='label') # Added label_column
|
||||
item = loader.get_item(0)
|
||||
assert isinstance(item[0], Image.Image)
|
||||
assert item[1] == 0
|
||||
|
||||
loader.print_summary()
|
||||
|
||||
def test_jpg_image_loader(mocker):
|
||||
# Mock Image.open to return a fake image
|
||||
mock_image = Image.new('RGB', (224, 224))
|
||||
mocker.patch('PIL.Image.open', return_value=mock_image)
|
||||
|
||||
dataset = create_sample_bytes_dataset()
|
||||
loader = JPGImageLoader(dataset, label_column='label') # Added label_column
|
||||
item = loader.get_item(0)
|
||||
assert isinstance(item[0], Image.Image)
|
||||
assert item[1] == 0
|
||||
|
||||
loader.print_summary()
|
||||
|
||||
def test_aiia_data_loader(mocker):
|
||||
# Mock Image.open to return a fake image
|
||||
mock_image = Image.new('RGB', (224, 224))
|
||||
mocker.patch('PIL.Image.open', return_value=mock_image)
|
||||
|
||||
dataset = create_sample_dataset()
|
||||
data_loader = AIIADataLoader(dataset, batch_size=2, label_column='label')
|
||||
|
||||
# Test train loader
|
||||
batch = next(iter(data_loader.train_loader))
|
||||
assert isinstance(batch, list)
|
||||
assert len(batch) == 2 # (images, labels)
|
||||
assert batch[0].shape[0] == 1 # batch size
|
||||
|
||||
def test_aiia_dataset():
|
||||
items = [(Image.new('RGB', (224, 224)), 0), (Image.new('RGB', (224, 224)), 1)]
|
||||
dataset = AIIADataset(items)
|
||||
|
||||
assert len(dataset) == 2
|
||||
|
||||
item = dataset[0]
|
||||
assert isinstance(item[0], torch.Tensor)
|
||||
assert item[1] == 0
|
||||
|
||||
def test_aiia_dataset_pre_training():
|
||||
items = [(Image.new('RGB', (224, 224)), 'denoise', Image.new('RGB', (224, 224)))]
|
||||
dataset = AIIADataset(items, pretraining=True)
|
||||
|
||||
assert len(dataset) == 1
|
||||
|
||||
item = dataset[0]
|
||||
assert isinstance(item[0], torch.Tensor)
|
||||
assert isinstance(item[2], str)
|
||||
|
||||
def test_aiia_dataset_invalid_image():
|
||||
items = [(Image.new('RGB', (50, 50)), 0)] # Create small image
|
||||
dataset = AIIADataset(items)
|
||||
|
||||
with pytest.raises(ValueError, match="Invalid image dimensions"):
|
||||
dataset[0]
|
||||
|
||||
def test_aiia_dataset_invalid_task():
|
||||
items = [(Image.new('RGB', (224, 224)), 'invalid_task', Image.new('RGB', (224, 224)))]
|
||||
dataset = AIIADataset(items, pretraining=True)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dataset[0]
|
||||
|
||||
def test_aiia_data_loader_invalid_column():
|
||||
dataset = create_sample_dataset()
|
||||
with pytest.raises(ValueError, match="Column 'invalid_column' not found"):
|
||||
AIIADataLoader(dataset, column='invalid_column')
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main(['-v'])
|
|
@ -0,0 +1,133 @@
|
|||
import os
|
||||
import torch
|
||||
from aiia import AIIABase, AIIABaseShared, AIIAExpert, AIIAmoe, AIIAchunked, AIIAConfig
|
||||
|
||||
def test_aiiabase_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIABase(config)
|
||||
assert isinstance(model, AIIABase)
|
||||
|
||||
def test_aiiabase_save_load():
|
||||
config = AIIAConfig()
|
||||
model = AIIABase(config)
|
||||
save_path = "test_aiiabase_save_load"
|
||||
|
||||
# Save the model
|
||||
model.save(save_path)
|
||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
||||
|
||||
# Load the model
|
||||
loaded_model = AIIABase.load(save_path)
|
||||
|
||||
# Check if the loaded model is an instance of AIIABase
|
||||
assert isinstance(loaded_model, AIIABase)
|
||||
|
||||
# Clean up
|
||||
os.remove(os.path.join(save_path, "model.pth"))
|
||||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
||||
|
||||
def test_aiiabase_shared_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIABaseShared(config)
|
||||
assert isinstance(model, AIIABaseShared)
|
||||
|
||||
def test_aiiabase_shared_save_load():
|
||||
config = AIIAConfig()
|
||||
model = AIIABaseShared(config)
|
||||
save_path = "test_aiiabase_shared_save_load"
|
||||
|
||||
# Save the model
|
||||
model.save(save_path)
|
||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
||||
|
||||
# Load the model
|
||||
loaded_model = AIIABaseShared.load(save_path)
|
||||
|
||||
# Check if the loaded model is an instance of AIIABaseShared
|
||||
assert isinstance(loaded_model, AIIABaseShared)
|
||||
|
||||
# Clean up
|
||||
os.remove(os.path.join(save_path, "model.pth"))
|
||||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
||||
|
||||
def test_aiiaexpert_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIAExpert(config)
|
||||
assert isinstance(model, AIIAExpert)
|
||||
|
||||
def test_aiiaexpert_save_load():
|
||||
config = AIIAConfig()
|
||||
model = AIIAExpert(config)
|
||||
save_path = "test_aiiaexpert_save_load"
|
||||
|
||||
# Save the model
|
||||
model.save(save_path)
|
||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
||||
|
||||
# Load the model
|
||||
loaded_model = AIIAExpert.load(save_path)
|
||||
|
||||
# Check if the loaded model is an instance of AIIAExpert
|
||||
assert isinstance(loaded_model, AIIAExpert)
|
||||
|
||||
# Clean up
|
||||
os.remove(os.path.join(save_path, "model.pth"))
|
||||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
||||
|
||||
def test_aiiamoe_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIAmoe(config, num_experts=5)
|
||||
assert isinstance(model, AIIAmoe)
|
||||
|
||||
def test_aiiamoe_save_load():
|
||||
config = AIIAConfig()
|
||||
model = AIIAmoe(config, num_experts=5)
|
||||
save_path = "test_aiiamoe_save_load"
|
||||
|
||||
# Save the model
|
||||
model.save(save_path)
|
||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
||||
|
||||
# Load the model
|
||||
loaded_model = AIIAmoe.load(save_path)
|
||||
|
||||
# Check if the loaded model is an instance of AIIAmoe
|
||||
assert isinstance(loaded_model, AIIAmoe)
|
||||
|
||||
# Clean up
|
||||
os.remove(os.path.join(save_path, "model.pth"))
|
||||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
||||
|
||||
def test_aiiachunked_creation():
|
||||
config = AIIAConfig()
|
||||
model = AIIAchunked(config)
|
||||
assert isinstance(model, AIIAchunked)
|
||||
|
||||
def test_aiiachunked_save_load():
|
||||
config = AIIAConfig()
|
||||
model = AIIAchunked(config)
|
||||
save_path = "test_aiiachunked_save_load"
|
||||
|
||||
# Save the model
|
||||
model.save(save_path)
|
||||
assert os.path.exists(os.path.join(save_path, "model.pth"))
|
||||
assert os.path.exists(os.path.join(save_path, "config.json"))
|
||||
|
||||
# Load the model
|
||||
loaded_model = AIIAchunked.load(save_path)
|
||||
|
||||
# Check if the loaded model is an instance of AIIAchunked
|
||||
assert isinstance(loaded_model, AIIAchunked)
|
||||
|
||||
# Clean up
|
||||
os.remove(os.path.join(save_path, "model.pth"))
|
||||
os.remove(os.path.join(save_path, "config.json"))
|
||||
os.rmdir(save_path)
|
|
@ -0,0 +1,75 @@
|
|||
import os
|
||||
import tempfile
|
||||
import pytest
|
||||
import torch.nn as nn
|
||||
from aiia import AIIAConfig
|
||||
|
||||
def test_aiia_config_initialization():
|
||||
config = AIIAConfig()
|
||||
assert config.model_name == "AIIA"
|
||||
assert config.kernel_size == 3
|
||||
assert config.activation_function == "GELU"
|
||||
assert config.hidden_size == 512
|
||||
assert config.num_hidden_layers == 12
|
||||
assert config.num_channels == 3
|
||||
assert config.learning_rate == 5e-5
|
||||
|
||||
def test_aiia_config_custom_initialization():
|
||||
config = AIIAConfig(
|
||||
model_name="CustomModel",
|
||||
kernel_size=5,
|
||||
activation_function="ReLU",
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=8,
|
||||
num_channels=1,
|
||||
learning_rate=1e-4
|
||||
)
|
||||
assert config.model_name == "CustomModel"
|
||||
assert config.kernel_size == 5
|
||||
assert config.activation_function == "ReLU"
|
||||
assert config.hidden_size == 1024
|
||||
assert config.num_hidden_layers == 8
|
||||
assert config.num_channels == 1
|
||||
assert config.learning_rate == 1e-4
|
||||
|
||||
def test_aiia_config_invalid_activation_function():
|
||||
with pytest.raises(ValueError):
|
||||
AIIAConfig(activation_function="InvalidFunction")
|
||||
|
||||
def test_aiia_config_to_dict():
|
||||
config = AIIAConfig()
|
||||
config_dict = config.to_dict()
|
||||
assert isinstance(config_dict, dict)
|
||||
assert config_dict["model_name"] == "AIIA"
|
||||
assert config_dict["kernel_size"] == 3
|
||||
|
||||
def test_aiia_config_save_and_load():
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
config = AIIAConfig(model_name="TempModel")
|
||||
save_path = os.path.join(tmpdir, "config")
|
||||
config.save(save_path)
|
||||
|
||||
loaded_config = AIIAConfig.load(save_path)
|
||||
assert loaded_config.model_name == "TempModel"
|
||||
assert loaded_config.kernel_size == 3
|
||||
assert loaded_config.activation_function == "GELU"
|
||||
|
||||
def test_aiia_config_save_and_load_with_custom_attributes():
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
config = AIIAConfig(model_name="TempModel", custom_attr="value")
|
||||
save_path = os.path.join(tmpdir, "config")
|
||||
config.save(save_path)
|
||||
|
||||
loaded_config = AIIAConfig.load(save_path)
|
||||
assert loaded_config.model_name == "TempModel"
|
||||
assert loaded_config.custom_attr == "value"
|
||||
|
||||
def test_aiia_config_save_and_load_with_nested_attributes():
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
config = AIIAConfig(model_name="TempModel", nested={"key": "value"})
|
||||
save_path = os.path.join(tmpdir, "config")
|
||||
config.save(save_path)
|
||||
|
||||
loaded_config = AIIAConfig.load(save_path)
|
||||
assert loaded_config.model_name == "TempModel"
|
||||
assert loaded_config.nested == {"key": "value"}
|
|
@ -0,0 +1,308 @@
|
|||
import pytest
|
||||
import torch
|
||||
from unittest.mock import MagicMock, patch, MagicMock, mock_open, call
|
||||
from aiia import Pretrainer, ProjectionHead, AIIABase, AIIAConfig
|
||||
import pandas as pd
|
||||
|
||||
# Test the ProjectionHead class
|
||||
def test_projection_head():
|
||||
head = ProjectionHead(hidden_size=512)
|
||||
x = torch.randn(1, 512, 32, 32)
|
||||
|
||||
# Test denoise task
|
||||
output_denoise = head(x, task='denoise')
|
||||
assert output_denoise.shape == (1, 3, 32, 32)
|
||||
|
||||
# Test rotate task
|
||||
output_rotate = head(x, task='rotate')
|
||||
assert output_rotate.shape == (1, 4)
|
||||
|
||||
# Test the Pretrainer class initialization
|
||||
def test_pretrainer_initialization():
|
||||
config = AIIAConfig()
|
||||
model = AIIABase(config=config)
|
||||
pretrainer = Pretrainer(model=model, learning_rate=0.001, config=config)
|
||||
assert pretrainer.device in ["cuda", "cpu"]
|
||||
assert isinstance(pretrainer.projection_head, ProjectionHead)
|
||||
assert isinstance(pretrainer.optimizer, torch.optim.AdamW)
|
||||
|
||||
# Test the safe_collate method
|
||||
def test_safe_collate():
|
||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
||||
batch = [
|
||||
(torch.randn(3, 32, 32), torch.randn(3, 32, 32), 'denoise'),
|
||||
(torch.randn(3, 32, 32), torch.tensor(1), 'rotate')
|
||||
]
|
||||
|
||||
collated_batch = pretrainer.safe_collate(batch)
|
||||
assert 'denoise' in collated_batch
|
||||
assert 'rotate' in collated_batch
|
||||
|
||||
# Test the _process_batch method
|
||||
@patch('aiia.pretrain.pretrainer.Pretrainer._process_batch')
|
||||
def test_process_batch(mock_process_batch):
|
||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
||||
batch_data = {
|
||||
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
|
||||
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
|
||||
}
|
||||
criterion_denoise = MagicMock()
|
||||
criterion_rotate = MagicMock()
|
||||
|
||||
mock_process_batch.return_value = 0.5
|
||||
loss = pretrainer._process_batch(batch_data, criterion_denoise, criterion_rotate)
|
||||
assert loss == 0.5
|
||||
|
||||
@patch('pandas.concat')
|
||||
@patch('pandas.read_parquet')
|
||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
||||
@patch('os.path.join', return_value='mocked/path/model.pt')
|
||||
@patch('builtins.print') # Add this to mock the print function
|
||||
def test_train_happy_path(mock_print, mock_path_join, mock_data_loader, mock_read_parquet, mock_concat):
|
||||
"""Test the train method under normal conditions with comprehensive verification."""
|
||||
# Setup test data and mocks
|
||||
real_df = pd.DataFrame({
|
||||
'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]
|
||||
})
|
||||
mock_read_parquet.return_value.head.return_value = real_df
|
||||
mock_concat.return_value = real_df
|
||||
|
||||
# Mock the model and related components
|
||||
mock_model = MagicMock()
|
||||
mock_projection_head = MagicMock()
|
||||
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
|
||||
pretrainer.projection_head = mock_projection_head
|
||||
pretrainer.optimizer = MagicMock()
|
||||
|
||||
# Setup dataset paths and mock batch data
|
||||
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
|
||||
output_path = "AIIA_test"
|
||||
|
||||
# Create mock batch data with proper structure
|
||||
mock_batch_data = {
|
||||
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
|
||||
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
|
||||
}
|
||||
|
||||
# Configure batch loss
|
||||
mock_batch_loss = torch.tensor(0.5, requires_grad=True)
|
||||
loader_instance = MagicMock()
|
||||
loader_instance.train_loader = [mock_batch_data]
|
||||
loader_instance.val_loader = [mock_batch_data]
|
||||
mock_data_loader.return_value = loader_instance
|
||||
|
||||
# Execute training with patched methods
|
||||
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss) as mock_process_batch, \
|
||||
patch.object(Pretrainer, '_validate', side_effect=[0.8, 0.3]) as mock_validate, \
|
||||
patch.object(Pretrainer, 'save_losses') as mock_save_losses, \
|
||||
patch('builtins.open', mock_open()):
|
||||
|
||||
pretrainer.train(dataset_paths, output_path=output_path, num_epochs=2)
|
||||
|
||||
# Verify method calls
|
||||
assert mock_read_parquet.call_count == len(dataset_paths)
|
||||
assert mock_process_batch.call_count == 2
|
||||
assert mock_validate.call_count == 2
|
||||
|
||||
# Check for "Best model saved!" instead of model.save()
|
||||
mock_print.assert_any_call("Best model saved!")
|
||||
|
||||
mock_save_losses.assert_called_once()
|
||||
|
||||
# Verify state changes
|
||||
assert len(pretrainer.train_losses) == 2
|
||||
assert pretrainer.train_losses == [0.5, 0.5]
|
||||
|
||||
|
||||
# Error cases
|
||||
def test_train_no_dataset_paths():
|
||||
"""Test ValueError when no dataset paths are provided."""
|
||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
||||
|
||||
with pytest.raises(ValueError, match="No dataset paths provided"):
|
||||
pretrainer.train([])
|
||||
|
||||
@patch('pandas.read_parquet')
|
||||
def test_train_all_datasets_fail(mock_read_parquet):
|
||||
"""Test handling when all datasets fail to load."""
|
||||
mock_read_parquet.side_effect = Exception("Failed to load dataset")
|
||||
|
||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
||||
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
|
||||
|
||||
with pytest.raises(ValueError, match="No valid datasets could be loaded"):
|
||||
pretrainer.train(dataset_paths)
|
||||
|
||||
# Edge cases
|
||||
@patch('pandas.concat')
|
||||
@patch('pandas.read_parquet')
|
||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
||||
def test_train_empty_loaders(mock_data_loader, mock_read_parquet, mock_concat):
|
||||
"""Test behavior with empty data loaders."""
|
||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
||||
mock_read_parquet.return_value.head.return_value = real_df
|
||||
mock_concat.return_value = real_df
|
||||
|
||||
loader_instance = MagicMock()
|
||||
loader_instance.train_loader = [] # Empty train loader
|
||||
loader_instance.val_loader = [] # Empty val loader
|
||||
mock_data_loader.return_value = loader_instance
|
||||
|
||||
mock_model = MagicMock()
|
||||
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
|
||||
pretrainer.projection_head = MagicMock()
|
||||
pretrainer.optimizer = MagicMock()
|
||||
|
||||
with patch.object(Pretrainer, 'save_losses') as mock_save_losses:
|
||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=1)
|
||||
|
||||
# Verify empty loader behavior
|
||||
assert len(pretrainer.train_losses) == 1
|
||||
assert pretrainer.train_losses[0] == 0.0
|
||||
mock_save_losses.assert_called_once()
|
||||
|
||||
@patch('pandas.concat')
|
||||
@patch('pandas.read_parquet')
|
||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
||||
def test_train_none_batch_data(mock_data_loader, mock_read_parquet, mock_concat):
|
||||
"""Test behavior when batch_data is None."""
|
||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
||||
mock_read_parquet.return_value.head.return_value = real_df
|
||||
mock_concat.return_value = real_df
|
||||
|
||||
loader_instance = MagicMock()
|
||||
loader_instance.train_loader = [None] # Loader returns None
|
||||
loader_instance.val_loader = []
|
||||
mock_data_loader.return_value = loader_instance
|
||||
|
||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
||||
pretrainer.projection_head = MagicMock()
|
||||
pretrainer.optimizer = MagicMock()
|
||||
|
||||
with patch.object(Pretrainer, '_process_batch') as mock_process_batch, \
|
||||
patch.object(Pretrainer, 'save_losses'):
|
||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=1)
|
||||
|
||||
# Verify None batch handling
|
||||
mock_process_batch.assert_not_called()
|
||||
assert pretrainer.train_losses[0] == 0.0
|
||||
|
||||
# Parameter variations
|
||||
@patch('pandas.concat')
|
||||
@patch('pandas.read_parquet')
|
||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
||||
def test_train_with_custom_parameters(mock_data_loader, mock_read_parquet, mock_concat):
|
||||
"""Test that custom parameters are properly passed through."""
|
||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
||||
mock_read_parquet.return_value.head.return_value = real_df
|
||||
mock_concat.return_value = real_df
|
||||
|
||||
loader_instance = MagicMock()
|
||||
loader_instance.train_loader = []
|
||||
loader_instance.val_loader = []
|
||||
mock_data_loader.return_value = loader_instance
|
||||
|
||||
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
|
||||
pretrainer.projection_head = MagicMock()
|
||||
pretrainer.optimizer = MagicMock()
|
||||
|
||||
# Custom parameters
|
||||
custom_output_path = "custom/output/path"
|
||||
custom_column = "custom_column"
|
||||
custom_batch_size = 16
|
||||
custom_sample_size = 5000
|
||||
|
||||
with patch.object(Pretrainer, 'save_losses'):
|
||||
pretrainer.train(
|
||||
['path/to/dataset.parquet'],
|
||||
output_path=custom_output_path,
|
||||
column=custom_column,
|
||||
batch_size=custom_batch_size,
|
||||
sample_size=custom_sample_size
|
||||
)
|
||||
|
||||
# Verify custom parameters were used
|
||||
mock_read_parquet.return_value.head.assert_called_once_with(custom_sample_size)
|
||||
assert mock_data_loader.call_args[1]['column'] == custom_column
|
||||
assert mock_data_loader.call_args[1]['batch_size'] == custom_batch_size
|
||||
|
||||
|
||||
|
||||
@patch('pandas.concat')
|
||||
@patch('pandas.read_parquet')
|
||||
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
|
||||
@patch('builtins.print') # Add this to mock the print function
|
||||
def test_train_validation_loss_improvement(mock_print, mock_data_loader, mock_read_parquet, mock_concat):
|
||||
"""Test that model is saved only when validation loss improves."""
|
||||
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
|
||||
mock_read_parquet.return_value.head.return_value = real_df
|
||||
mock_concat.return_value = real_df
|
||||
|
||||
# Create mock batch data with proper structure
|
||||
mock_batch_data = {
|
||||
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
|
||||
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
|
||||
}
|
||||
|
||||
loader_instance = MagicMock()
|
||||
loader_instance.train_loader = [mock_batch_data]
|
||||
loader_instance.val_loader = [mock_batch_data]
|
||||
mock_data_loader.return_value = loader_instance
|
||||
|
||||
mock_model = MagicMock()
|
||||
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
|
||||
pretrainer.projection_head = MagicMock()
|
||||
pretrainer.optimizer = MagicMock()
|
||||
|
||||
# Initialize the best validation loss
|
||||
pretrainer.best_val_loss = float('inf')
|
||||
|
||||
mock_batch_loss = torch.tensor(0.5, requires_grad=True)
|
||||
|
||||
# Test improving validation loss
|
||||
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss), \
|
||||
patch.object(Pretrainer, '_validate', side_effect=[3.0, 2.0, 1.0]), \
|
||||
patch.object(Pretrainer, 'save_losses'):
|
||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=3)
|
||||
|
||||
# Check for "Best model saved!" 3 times
|
||||
assert mock_print.call_args_list.count(call("Best model saved!")) == 3
|
||||
|
||||
# Reset for next test
|
||||
mock_print.reset_mock()
|
||||
pretrainer.train_losses = []
|
||||
|
||||
# Reset best validation loss for the second test
|
||||
pretrainer.best_val_loss = float('inf')
|
||||
|
||||
# Test fluctuating validation loss
|
||||
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss), \
|
||||
patch.object(Pretrainer, '_validate', side_effect=[3.0, 4.0, 2.0]), \
|
||||
patch.object(Pretrainer, 'save_losses'):
|
||||
pretrainer.train(['path/to/dataset.parquet'], num_epochs=3)
|
||||
|
||||
# Should print "Best model saved!" only on first and third epochs
|
||||
assert mock_print.call_args_list.count(call("Best model saved!")) == 2
|
||||
|
||||
|
||||
@patch('aiia.pretrain.pretrainer.Pretrainer._process_batch')
|
||||
def test_validate(mock_process_batch):
|
||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
||||
val_loader = [MagicMock()]
|
||||
criterion_denoise = MagicMock()
|
||||
criterion_rotate = MagicMock()
|
||||
|
||||
mock_process_batch.return_value = torch.tensor(0.5)
|
||||
loss = pretrainer._validate(val_loader, criterion_denoise, criterion_rotate)
|
||||
assert loss == 0.5
|
||||
|
||||
# Test the save_losses method
|
||||
@patch('aiia.pretrain.pretrainer.Pretrainer.save_losses')
|
||||
def test_save_losses(mock_save_losses):
|
||||
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
|
||||
pretrainer.train_losses = [0.1, 0.2]
|
||||
pretrainer.val_losses = [0.3, 0.4]
|
||||
|
||||
csv_file = 'losses.csv'
|
||||
pretrainer.save_losses(csv_file)
|
||||
mock_save_losses.assert_called_once_with(csv_file)
|
Loading…
Reference in New Issue