added fp16 and bf16 support when loading model
This commit is contained in:
parent
f8e59c5896
commit
b1c486afee
|
@ -6,3 +6,11 @@ build-backend = "setuptools.build_meta"
|
|||
line-length = 88
|
||||
target-version = ['py37']
|
||||
include = '\.pyi?$'
|
||||
|
||||
[project]
|
||||
name = "AIIA"
|
||||
version = "0.1.1" # Replace with your desired version number
|
||||
description = "AIIA Deep Learning Model"
|
||||
authors = [
|
||||
{ name="Falko Habel", email="falko.habel@gmx.de" }
|
||||
]
|
2
setup.py
2
setup.py
|
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
|||
|
||||
setup(
|
||||
name="aiia",
|
||||
version="0.1.0",
|
||||
version="0.1.1",
|
||||
packages=find_packages(where="src"),
|
||||
package_dir={"": "src"},
|
||||
install_requires=[
|
||||
|
|
|
@ -3,6 +3,7 @@ from torch import nn
|
|||
import torch
|
||||
import os
|
||||
import copy
|
||||
import warnings
|
||||
|
||||
|
||||
class AIIA(nn.Module):
|
||||
|
@ -22,15 +23,66 @@ class AIIA(nn.Module):
|
|||
self.config.save(path)
|
||||
|
||||
@classmethod
|
||||
def load(cls, path):
|
||||
def load(cls, path, precision: str = None):
|
||||
"""
|
||||
Load the model from the given path.
|
||||
|
||||
Parameters:
|
||||
- path (str): The directory containing the saved model.
|
||||
- precision (str, optional): The desired precision for model weights.
|
||||
Options are:
|
||||
'fp16' -> load weights with torch.float16,
|
||||
'bf16' -> load weights with torch.bfloat16.
|
||||
If precision is None, default torch.float32 is used.
|
||||
"""
|
||||
config = AIIAConfig.load(path)
|
||||
model = cls(config)
|
||||
# Check if CUDA is available and set the device accordingly
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
# Load the state dictionary with the correct device mapping
|
||||
model.load_state_dict(torch.load(f"{path}/model.pth", map_location=device))
|
||||
dtype = None
|
||||
|
||||
if precision is not None:
|
||||
if precision.lower() == 'fp16':
|
||||
dtype = torch.float16
|
||||
elif precision.lower() == 'bf16':
|
||||
# For CUDA devices, check whether BF16 is supported. If not, fallback to FP16.
|
||||
if device == 'cuda' and not torch.cuda.is_bf16_supported():
|
||||
warnings.warn("BF16 is not supported on this GPU. Falling back to FP16.")
|
||||
dtype = torch.float16
|
||||
else:
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
raise ValueError("Unsupported precision. Use 'fp16', 'bf16', or leave as None.")
|
||||
|
||||
if dtype is not None:
|
||||
model_dict = torch.load(f"{path}/model.pth", map_location=device, dtype=dtype)
|
||||
else:
|
||||
model_dict = torch.load(f"{path}/model.pth", map_location=device)
|
||||
|
||||
model.load_state_dict(model_dict)
|
||||
return model
|
||||
|
||||
class AIIABase(AIIA):
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super().__init__(config=config, **kwargs)
|
||||
self.config = self.config
|
||||
|
||||
# Initialize layers based on configuration
|
||||
layers = []
|
||||
in_channels = self.config.num_channels
|
||||
|
||||
for _ in range(self.config.num_hidden_layers):
|
||||
layers.extend([
|
||||
nn.Conv2d(in_channels, self.config.hidden_size,
|
||||
kernel_size=self.config.kernel_size, padding=1),
|
||||
getattr(nn, self.config.activation_function)(),
|
||||
nn.MaxPool2d(kernel_size=1, stride=1)
|
||||
])
|
||||
in_channels = self.config.hidden_size
|
||||
|
||||
self.cnn = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.cnn(x)
|
||||
|
||||
class AIIABaseShared(AIIA):
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
|
@ -107,29 +159,6 @@ class AIIABaseShared(AIIA):
|
|||
|
||||
return out
|
||||
|
||||
class AIIABase(AIIA):
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super().__init__(config=config, **kwargs)
|
||||
self.config = self.config
|
||||
|
||||
# Initialize layers based on configuration
|
||||
layers = []
|
||||
in_channels = self.config.num_channels
|
||||
|
||||
for _ in range(self.config.num_hidden_layers):
|
||||
layers.extend([
|
||||
nn.Conv2d(in_channels, self.config.hidden_size,
|
||||
kernel_size=self.config.kernel_size, padding=1),
|
||||
getattr(nn, self.config.activation_function)(),
|
||||
nn.MaxPool2d(kernel_size=1, stride=1)
|
||||
])
|
||||
in_channels = self.config.hidden_size
|
||||
|
||||
self.cnn = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.cnn(x)
|
||||
|
||||
class AIIAExpert(AIIA):
|
||||
def __init__(self, config: AIIAConfig, base_class=AIIABase, **kwargs):
|
||||
super().__init__(config=config, **kwargs)
|
||||
|
@ -228,6 +257,7 @@ class AIIArecursive(AIIA):
|
|||
combined_output = torch.mean(torch.stack(processed_patches, dim=0), dim=0)
|
||||
return combined_output
|
||||
|
||||
config = AIIAConfig()
|
||||
model = AIIAmoe(config, num_experts=5)
|
||||
model.save("test")
|
||||
if __name__ =="__main__":
|
||||
config = AIIAConfig()
|
||||
model = AIIAmoe(config, num_experts=5)
|
||||
model.save("test")
|
Loading…
Reference in New Issue