updated pretraing to create a extra class for Pretraining
This commit is contained in:
parent
1e665c4604
commit
7de7eef081
17
README.md
17
README.md
|
@ -1,2 +1,19 @@
|
||||||
# AIIA
|
# AIIA
|
||||||
|
|
||||||
|
|
||||||
|
## Example Usage:
|
||||||
|
```Python
|
||||||
|
if __name__ == "__main__":
|
||||||
|
data_path1 = "/root/training_data/vision-dataset/images_checkpoint.parquet"
|
||||||
|
data_path2 = "/root/training_data/vision-dataset/vec_images_dataset.parquet"
|
||||||
|
|
||||||
|
from aiia.model import AIIABase
|
||||||
|
from aiia.model.config import AIIAConfig
|
||||||
|
from aiia.pretrain import Pretrainer
|
||||||
|
|
||||||
|
config = AIIAConfig(model_name="AIIA-Base-512x20k")
|
||||||
|
model = AIIABase(config)
|
||||||
|
|
||||||
|
pretrainer = Pretrainer(model, learning_rate=1e-4)
|
||||||
|
pretrainer.train(data_path1, data_path2, num_epochs=10)
|
||||||
|
```
|
|
@ -1,5 +1,7 @@
|
||||||
from .model.Model import AIIABase, AIIABaseShared, AIIAchunked, AIIAExpert, AIIAmoe, AIIA, AIIArecursive
|
from .model.Model import AIIABase, AIIABaseShared, AIIAchunked, AIIAExpert, AIIAmoe, AIIA, AIIArecursive
|
||||||
from .model.config import AIIAConfig
|
from .model.config import AIIAConfig
|
||||||
from .data.DataLoader import DataLoader
|
from .data.DataLoader import DataLoader
|
||||||
|
from .pretrain.pretrainer import Pretrainer, ProjectionHead
|
||||||
|
|
||||||
|
|
||||||
__version__ = "0.1.0"
|
__version__ = "0.1.0"
|
||||||
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
from .pretrainer import Pretrainer, ProjectionHead
|
||||||
|
|
||||||
|
__all__ = ["Pretrainer", "ProjectionHead"]
|
|
@ -0,0 +1,219 @@
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import csv
|
||||||
|
import pandas as pd
|
||||||
|
from tqdm import tqdm
|
||||||
|
from ..model.Model import AIIA
|
||||||
|
from ..data.DataLoader import AIIADataLoader
|
||||||
|
|
||||||
|
class ProjectionHead(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.conv_denoise = nn.Conv2d(512, 3, kernel_size=1)
|
||||||
|
self.conv_rotate = nn.Conv2d(512, 4, kernel_size=1) # 4 classes for 0, 90, 180, 270 degrees
|
||||||
|
|
||||||
|
def forward(self, x, task='denoise'):
|
||||||
|
if task == 'denoise':
|
||||||
|
return self.conv_denoise(x)
|
||||||
|
else:
|
||||||
|
return self.conv_rotate(x).mean(dim=(2, 3)) # Global average pooling for rotation task
|
||||||
|
|
||||||
|
class Pretrainer:
|
||||||
|
def __init__(self, model: AIIA, learning_rate=1e-4):
|
||||||
|
"""
|
||||||
|
Initialize the pretrainer with a model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (AIIA): The model instance to pretrain
|
||||||
|
learning_rate (float): Learning rate for optimization
|
||||||
|
"""
|
||||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
self.model = model.to(self.device)
|
||||||
|
self.projection_head = ProjectionHead().to(self.device)
|
||||||
|
self.optimizer = torch.optim.AdamW(
|
||||||
|
list(self.model.parameters()) + list(self.projection_head.parameters()),
|
||||||
|
lr=learning_rate
|
||||||
|
)
|
||||||
|
self.train_losses = []
|
||||||
|
self.val_losses = []
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def safe_collate(batch):
|
||||||
|
"""Safely collate batch data handling both denoise and rotate tasks."""
|
||||||
|
denoise_batch = []
|
||||||
|
rotate_batch = []
|
||||||
|
|
||||||
|
for sample in batch:
|
||||||
|
try:
|
||||||
|
noisy_img, target, task = sample
|
||||||
|
if task == 'denoise':
|
||||||
|
denoise_batch.append({
|
||||||
|
'image': noisy_img,
|
||||||
|
'target': target,
|
||||||
|
'task': task
|
||||||
|
})
|
||||||
|
else: # rotate task
|
||||||
|
rotate_batch.append({
|
||||||
|
'image': noisy_img,
|
||||||
|
'target': target,
|
||||||
|
'task': task
|
||||||
|
})
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Skipping sample due to error: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not denoise_batch and not rotate_batch:
|
||||||
|
return None
|
||||||
|
|
||||||
|
batch_data = {
|
||||||
|
'denoise': None,
|
||||||
|
'rotate': None
|
||||||
|
}
|
||||||
|
|
||||||
|
if denoise_batch:
|
||||||
|
images = torch.stack([x['image'] for x in denoise_batch])
|
||||||
|
targets = torch.stack([x['target'] for x in denoise_batch])
|
||||||
|
batch_data['denoise'] = (images, targets)
|
||||||
|
|
||||||
|
if rotate_batch:
|
||||||
|
images = torch.stack([x['image'] for x in rotate_batch])
|
||||||
|
targets = torch.stack([x['target'] for x in rotate_batch])
|
||||||
|
batch_data['rotate'] = (images, targets)
|
||||||
|
|
||||||
|
return batch_data
|
||||||
|
|
||||||
|
def _process_batch(self, batch_data, criterion_denoise, criterion_rotate, training=True):
|
||||||
|
"""Process a single batch of data."""
|
||||||
|
batch_loss = 0
|
||||||
|
|
||||||
|
if batch_data['denoise'] is not None:
|
||||||
|
noisy_imgs, targets = batch_data['denoise']
|
||||||
|
noisy_imgs = noisy_imgs.to(self.device)
|
||||||
|
targets = targets.to(self.device)
|
||||||
|
|
||||||
|
features = self.model(noisy_imgs)
|
||||||
|
outputs = self.projection_head(features, task='denoise')
|
||||||
|
loss = criterion_denoise(outputs, targets)
|
||||||
|
batch_loss += loss
|
||||||
|
|
||||||
|
if batch_data['rotate'] is not None:
|
||||||
|
imgs, targets = batch_data['rotate']
|
||||||
|
imgs = imgs.to(self.device)
|
||||||
|
targets = targets.long().to(self.device)
|
||||||
|
|
||||||
|
features = self.model(imgs)
|
||||||
|
outputs = self.projection_head(features, task='rotate')
|
||||||
|
loss = criterion_rotate(outputs, targets)
|
||||||
|
batch_loss += loss
|
||||||
|
|
||||||
|
return batch_loss
|
||||||
|
|
||||||
|
def train(self, data_path1, data_path2, num_epochs=3, batch_size=2, sample_size=10000):
|
||||||
|
"""
|
||||||
|
Train the model using the specified datasets.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data_path1 (str): Path to first dataset
|
||||||
|
data_path2 (str): Path to second dataset
|
||||||
|
num_epochs (int): Number of training epochs
|
||||||
|
batch_size (int): Batch size for training
|
||||||
|
sample_size (int): Number of samples to use from each dataset
|
||||||
|
"""
|
||||||
|
# Read and merge datasets
|
||||||
|
df1 = pd.read_parquet(data_path1).head(sample_size)
|
||||||
|
df2 = pd.read_parquet(data_path2).head(sample_size)
|
||||||
|
merged_df = pd.concat([df1, df2], ignore_index=True)
|
||||||
|
|
||||||
|
# Initialize data loader
|
||||||
|
aiia_loader = AIIADataLoader(
|
||||||
|
merged_df,
|
||||||
|
column="image_bytes",
|
||||||
|
batch_size=batch_size,
|
||||||
|
pretraining=True,
|
||||||
|
collate_fn=self.safe_collate
|
||||||
|
)
|
||||||
|
|
||||||
|
criterion_denoise = nn.MSELoss()
|
||||||
|
criterion_rotate = nn.CrossEntropyLoss()
|
||||||
|
best_val_loss = float('inf')
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
print(f"\nEpoch {epoch+1}/{num_epochs}")
|
||||||
|
print("-" * 20)
|
||||||
|
|
||||||
|
# Training phase
|
||||||
|
self.model.train()
|
||||||
|
self.projection_head.train()
|
||||||
|
total_train_loss = 0.0
|
||||||
|
batch_count = 0
|
||||||
|
|
||||||
|
for batch_data in tqdm(aiia_loader.train_loader):
|
||||||
|
if batch_data is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
batch_loss = self._process_batch(batch_data, criterion_denoise, criterion_rotate)
|
||||||
|
|
||||||
|
if batch_loss > 0:
|
||||||
|
batch_loss.backward()
|
||||||
|
self.optimizer.step()
|
||||||
|
total_train_loss += batch_loss.item()
|
||||||
|
batch_count += 1
|
||||||
|
|
||||||
|
avg_train_loss = total_train_loss / max(batch_count, 1)
|
||||||
|
self.train_losses.append(avg_train_loss)
|
||||||
|
print(f"Training Loss: {avg_train_loss:.4f}")
|
||||||
|
|
||||||
|
# Validation phase
|
||||||
|
self.model.eval()
|
||||||
|
self.projection_head.eval()
|
||||||
|
val_loss = self._validate(aiia_loader.val_loader, criterion_denoise, criterion_rotate)
|
||||||
|
|
||||||
|
if val_loss < best_val_loss:
|
||||||
|
best_val_loss = val_loss
|
||||||
|
self.save_model("AIIA-base-512")
|
||||||
|
print("Best model saved!")
|
||||||
|
|
||||||
|
self.save_losses('losses.csv')
|
||||||
|
|
||||||
|
def _validate(self, val_loader, criterion_denoise, criterion_rotate):
|
||||||
|
"""Perform validation and return average validation loss."""
|
||||||
|
val_loss = 0.0
|
||||||
|
val_batch_count = 0
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch_data in val_loader:
|
||||||
|
if batch_data is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
batch_loss = self._process_batch(
|
||||||
|
batch_data, criterion_denoise, criterion_rotate, training=False
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_loss > 0:
|
||||||
|
val_loss += batch_loss.item()
|
||||||
|
val_batch_count += 1
|
||||||
|
|
||||||
|
avg_val_loss = val_loss / max(val_batch_count, 1)
|
||||||
|
self.val_losses.append(avg_val_loss)
|
||||||
|
print(f"Validation Loss: {avg_val_loss:.4f}")
|
||||||
|
return avg_val_loss
|
||||||
|
|
||||||
|
def save_model(self, path):
|
||||||
|
"""Save the model and projection head."""
|
||||||
|
self.model.save(path)
|
||||||
|
torch.save(self.projection_head.state_dict(), f"{path}_projection_head.pth")
|
||||||
|
|
||||||
|
def save_losses(self, csv_file):
|
||||||
|
"""Save training and validation losses to a CSV file."""
|
||||||
|
data = list(zip(
|
||||||
|
range(1, len(self.train_losses) + 1),
|
||||||
|
self.train_losses,
|
||||||
|
self.val_losses
|
||||||
|
))
|
||||||
|
|
||||||
|
with open(csv_file, mode='w', newline='') as file:
|
||||||
|
writer = csv.writer(file)
|
||||||
|
writer.writerow(['Epoch', 'Train Loss', 'Validation Loss'])
|
||||||
|
writer.writerows(data)
|
||||||
|
print(f"Loss data has been written to {csv_file}")
|
226
src/pretrain.py
226
src/pretrain.py
|
@ -1,226 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
import csv
|
|
||||||
import pandas as pd
|
|
||||||
from aiia.model.config import AIIAConfig
|
|
||||||
from aiia.model import AIIABase
|
|
||||||
from aiia.data.DataLoader import AIIADataLoader
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
class ProjectionHead(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.conv_denoise = nn.Conv2d(512, 3, kernel_size=1)
|
|
||||||
self.conv_rotate = nn.Conv2d(512, 4, kernel_size=1) # 4 classes for 0, 90, 180, 270 degrees
|
|
||||||
|
|
||||||
def forward(self, x, task='denoise'):
|
|
||||||
if task == 'denoise':
|
|
||||||
return self.conv_denoise(x)
|
|
||||||
else:
|
|
||||||
return self.conv_rotate(x).mean(dim=(2, 3)) # Global average pooling for rotation task
|
|
||||||
|
|
||||||
def pretrain_model(data_path1, data_path2, num_epochs=3):
|
|
||||||
# Read and merge datasets
|
|
||||||
df1 = pd.read_parquet(data_path1).head(10000)
|
|
||||||
df2 = pd.read_parquet(data_path2).head(10000)
|
|
||||||
merged_df = pd.concat([df1, df2], ignore_index=True)
|
|
||||||
|
|
||||||
# Model configuration
|
|
||||||
config = AIIAConfig(
|
|
||||||
model_name="AIIA-Base-512x20k",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize model and projection head
|
|
||||||
model = AIIABase(config)
|
|
||||||
projection_head = ProjectionHead()
|
|
||||||
|
|
||||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
||||||
model.to(device)
|
|
||||||
projection_head.to(device)
|
|
||||||
|
|
||||||
def safe_collate(batch):
|
|
||||||
denoise_batch = []
|
|
||||||
rotate_batch = []
|
|
||||||
|
|
||||||
for sample in batch:
|
|
||||||
try:
|
|
||||||
noisy_img, target, task = sample
|
|
||||||
if task == 'denoise':
|
|
||||||
denoise_batch.append({
|
|
||||||
'image': noisy_img,
|
|
||||||
'target': target,
|
|
||||||
'task': task
|
|
||||||
})
|
|
||||||
else: # rotate task
|
|
||||||
rotate_batch.append({
|
|
||||||
'image': noisy_img,
|
|
||||||
'target': target,
|
|
||||||
'task': task
|
|
||||||
})
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Skipping sample due to error: {e}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
if not denoise_batch and not rotate_batch:
|
|
||||||
return None
|
|
||||||
|
|
||||||
batch_data = {
|
|
||||||
'denoise': None,
|
|
||||||
'rotate': None
|
|
||||||
}
|
|
||||||
|
|
||||||
if denoise_batch:
|
|
||||||
images = torch.stack([x['image'] for x in denoise_batch])
|
|
||||||
targets = torch.stack([x['target'] for x in denoise_batch])
|
|
||||||
batch_data['denoise'] = (images, targets)
|
|
||||||
|
|
||||||
if rotate_batch:
|
|
||||||
images = torch.stack([x['image'] for x in rotate_batch])
|
|
||||||
targets = torch.stack([x['target'] for x in rotate_batch])
|
|
||||||
batch_data['rotate'] = (images, targets)
|
|
||||||
|
|
||||||
return batch_data
|
|
||||||
|
|
||||||
aiia_loader = AIIADataLoader(
|
|
||||||
merged_df,
|
|
||||||
column="image_bytes",
|
|
||||||
batch_size=2,
|
|
||||||
pretraining=True,
|
|
||||||
collate_fn=safe_collate
|
|
||||||
)
|
|
||||||
|
|
||||||
train_loader = aiia_loader.train_loader
|
|
||||||
val_loader = aiia_loader.val_loader
|
|
||||||
|
|
||||||
criterion_denoise = nn.MSELoss()
|
|
||||||
criterion_rotate = nn.CrossEntropyLoss()
|
|
||||||
|
|
||||||
# Update optimizer to include projection head parameters
|
|
||||||
optimizer = torch.optim.AdamW(
|
|
||||||
list(model.parameters()) + list(projection_head.parameters()),
|
|
||||||
lr=config.learning_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
best_val_loss = float('inf')
|
|
||||||
train_losses = []
|
|
||||||
val_losses = []
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
print(f"\nEpoch {epoch+1}/{num_epochs}")
|
|
||||||
print("-" * 20)
|
|
||||||
|
|
||||||
# Training phase
|
|
||||||
model.train()
|
|
||||||
projection_head.train()
|
|
||||||
total_train_loss = 0.0
|
|
||||||
batch_count = 0
|
|
||||||
|
|
||||||
for batch_data in tqdm(train_loader):
|
|
||||||
if batch_data is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
batch_loss = 0
|
|
||||||
|
|
||||||
# Handle denoise task
|
|
||||||
if batch_data['denoise'] is not None:
|
|
||||||
noisy_imgs, targets = batch_data['denoise']
|
|
||||||
noisy_imgs = noisy_imgs.to(device)
|
|
||||||
targets = targets.to(device)
|
|
||||||
|
|
||||||
# Get features from base model
|
|
||||||
features = model(noisy_imgs)
|
|
||||||
# Project features back to image space
|
|
||||||
outputs = projection_head(features, task='denoise')
|
|
||||||
loss = criterion_denoise(outputs, targets)
|
|
||||||
batch_loss += loss
|
|
||||||
|
|
||||||
# Handle rotate task
|
|
||||||
if batch_data['rotate'] is not None:
|
|
||||||
imgs, targets = batch_data['rotate']
|
|
||||||
imgs = imgs.to(device)
|
|
||||||
targets = targets.long().to(device)
|
|
||||||
|
|
||||||
# Get features from base model
|
|
||||||
features = model(imgs)
|
|
||||||
# Project features to rotation predictions
|
|
||||||
outputs = projection_head(features, task='rotate')
|
|
||||||
|
|
||||||
loss = criterion_rotate(outputs, targets)
|
|
||||||
batch_loss += loss
|
|
||||||
|
|
||||||
if batch_loss > 0:
|
|
||||||
batch_loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
total_train_loss += batch_loss.item()
|
|
||||||
batch_count += 1
|
|
||||||
|
|
||||||
avg_train_loss = total_train_loss / max(batch_count, 1)
|
|
||||||
train_losses.append(avg_train_loss)
|
|
||||||
print(f"Training Loss: {avg_train_loss:.4f}")
|
|
||||||
|
|
||||||
# Validation phase
|
|
||||||
model.eval()
|
|
||||||
projection_head.eval()
|
|
||||||
val_loss = 0.0
|
|
||||||
val_batch_count = 0
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
for batch_data in val_loader:
|
|
||||||
if batch_data is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
batch_loss = 0
|
|
||||||
|
|
||||||
if batch_data['denoise'] is not None:
|
|
||||||
noisy_imgs, targets = batch_data['denoise']
|
|
||||||
noisy_imgs = noisy_imgs.to(device)
|
|
||||||
targets = targets.to(device)
|
|
||||||
|
|
||||||
features = model(noisy_imgs)
|
|
||||||
outputs = projection_head(features, task='denoise')
|
|
||||||
loss = criterion_denoise(outputs, targets)
|
|
||||||
batch_loss += loss
|
|
||||||
|
|
||||||
if batch_data['rotate'] is not None:
|
|
||||||
imgs, targets = batch_data['rotate']
|
|
||||||
imgs = imgs.to(device)
|
|
||||||
targets = targets.long().to(device)
|
|
||||||
|
|
||||||
features = model(imgs)
|
|
||||||
outputs = projection_head(features, task='rotate')
|
|
||||||
loss = criterion_rotate(outputs, targets)
|
|
||||||
batch_loss += loss
|
|
||||||
|
|
||||||
if batch_loss > 0:
|
|
||||||
val_loss += batch_loss.item()
|
|
||||||
val_batch_count += 1
|
|
||||||
|
|
||||||
avg_val_loss = val_loss / max(val_batch_count, 1)
|
|
||||||
val_losses.append(avg_val_loss)
|
|
||||||
print(f"Validation Loss: {avg_val_loss:.4f}")
|
|
||||||
|
|
||||||
if avg_val_loss < best_val_loss:
|
|
||||||
best_val_loss = avg_val_loss
|
|
||||||
# Save both model and projection head
|
|
||||||
model.save("AIIA-base-512")
|
|
||||||
print("Best model saved!")
|
|
||||||
|
|
||||||
# Prepare the data to be written to the CSV file
|
|
||||||
data = list(zip(range(1, len(train_losses) + 1), train_losses, val_losses))
|
|
||||||
|
|
||||||
# Specify the CSV file name
|
|
||||||
csv_file = 'losses.csv'
|
|
||||||
|
|
||||||
# Write the data to the CSV file
|
|
||||||
with open(csv_file, mode='w', newline='') as file:
|
|
||||||
writer = csv.writer(file)
|
|
||||||
# Write the header
|
|
||||||
writer.writerow(['Epoch', 'Train Loss', 'Validation Loss'])
|
|
||||||
# Write the data
|
|
||||||
writer.writerows(data)
|
|
||||||
print(f"Data has been written to {csv_file}")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
data_path1 = "/root/training_data/vision-dataset/images_checkpoint.parquet"
|
|
||||||
data_path2 = "/root/training_data/vision-dataset/vec_images_dataset.parquet"
|
|
||||||
pretrain_model(data_path1, data_path2, num_epochs=10)
|
|
Loading…
Reference in New Issue