updated models for improved config
This commit is contained in:
parent
b87ce68c82
commit
74973a325b
|
@ -4,9 +4,13 @@ import torch
|
|||
|
||||
|
||||
class AIIA(nn.Module):
|
||||
def __init__(self, config: AIIAConfig):
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super(AIIA, self).__init__()
|
||||
self.config = config
|
||||
|
||||
# Update the config with any additional keyword arguments
|
||||
for key, value in kwargs.items():
|
||||
setattr(self.config, key, value)
|
||||
|
||||
def save(self, model_path, config_path):
|
||||
torch.save(self.state_dict(), model_path)
|
||||
|
@ -20,67 +24,89 @@ class AIIA(nn.Module):
|
|||
return model
|
||||
|
||||
class AIIABase(AIIA):
|
||||
def __init__(self, config: AIIAConfig):
|
||||
super(AIIABase, self).__init__(config)
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super(AIIABase, self).__init__(config, **kwargs)
|
||||
|
||||
# Initialize layers based on updated config
|
||||
layers = []
|
||||
in_channels = config.num_channels
|
||||
for _ in range(config.num_hidden_layers):
|
||||
in_channels = self.config.num_channels
|
||||
for _ in range(self.config.num_hidden_layers):
|
||||
layers.extend([
|
||||
nn.Conv2d(in_channels, config.hidden_size, kernel_size=config.kernel_size, padding=1),
|
||||
getattr(nn, config.activation_function)(),
|
||||
nn.Conv2d(in_channels, self.config.hidden_size,
|
||||
kernel_size=self.config.kernel_size, padding=1),
|
||||
getattr(nn, self.config.activation_function)(),
|
||||
nn.MaxPool2d(kernel_size=2)
|
||||
])
|
||||
in_channels = config.hidden_size
|
||||
in_channels = self.config.hidden_size
|
||||
self.cnn = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.cnn(x)
|
||||
|
||||
class AIIAExpert(AIIA):
|
||||
def __init__(self, config: AIIAConfig):
|
||||
super(AIIAExpert, self).__init__(config)
|
||||
self.base_cnn = AIIABase(config)
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super(AIIAExpert, self).__init__(config, **kwargs)
|
||||
self.base_cnn = AIIABase(config, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
return self.base_cnn(x)
|
||||
|
||||
class AIIAmoe(AIIA):
|
||||
def __init__(self, config: AIIAConfig, num_experts: int = 3):
|
||||
super(AIIAmoe, self).__init__(config)
|
||||
self.experts = nn.ModuleList([AIIAExpert(config) for _ in range(num_experts)])
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super(AIIAmoe, self).__init__(config, **kwargs)
|
||||
|
||||
# Get num_experts from updated config
|
||||
num_Experts = getattr(self.config, 'num_Experts', 3)
|
||||
self.experts = nn.ModuleList([AIIAExpert(config, **kwargs) for _ in range(num_Experts)])
|
||||
|
||||
# Update gate based on latest config values
|
||||
self.gate = nn.Sequential(
|
||||
nn.Linear(config.hidden_size, num_experts),
|
||||
nn.Linear(self.config.hidden_size, num_Experts),
|
||||
nn.Softmax(dim=1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
|
||||
gate_weights = self.gate(torch.mean(expert_outputs, (2, 3)))
|
||||
merged_output = torch.sum(expert_outputs * gate_weights.unsqueeze(2).unsqueeze(3), dim=1)
|
||||
merged_output = torch.sum(
|
||||
expert_outputs * gate_weights.unsqueeze(2).unsqueeze(3), dim=1
|
||||
)
|
||||
return merged_output
|
||||
|
||||
class AIIAchunked(AIIA):
|
||||
def __init__(self, config: AIIAConfig, patch_size: int = 16):
|
||||
super(AIIAchunked, self).__init__(config)
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super(AIIAchunked, self).__init__(config, **kwargs)
|
||||
|
||||
# Get patch_size from updated config
|
||||
patch_size = getattr(self.config, 'patch_size', 16)
|
||||
self.patch_size = patch_size
|
||||
self.base_cnn = AIIABase(config)
|
||||
|
||||
# Initialize base CNN with updated config
|
||||
self.base_cnn = AIIABase(config, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
patches = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, self.patch_size)
|
||||
patches = patches.contiguous().view(patches.size(0), patches.size(1), -1, self.patch_size, self.patch_size)
|
||||
patch_outputs = []
|
||||
|
||||
for p in torch.split(patches, 1, dim=2):
|
||||
p = p.squeeze(2)
|
||||
po = self.base_cnn(p)
|
||||
patch_outputs.append(po)
|
||||
|
||||
combined_output = torch.mean(torch.stack(patch_outputs, dim=0), dim=0)
|
||||
return combined_output
|
||||
|
||||
class AIIAresursive(AIIA):
|
||||
def __init__(self, config: AIIAConfig, recursion_depth: int = 2):
|
||||
super(AIIAresursive, self).__init__(config)
|
||||
def __init__(self, config: AIIAConfig, **kwargs):
|
||||
super(AIIAresursive, self).__init__(config, **kwargs)
|
||||
|
||||
# Get recursion_depth from updated config
|
||||
recursion_depth = getattr(self.config, 'recursion_depth', 2)
|
||||
self.recursion_depth = recursion_depth
|
||||
self.chunked_cnn = AIIAchunked(config)
|
||||
|
||||
# Initialize chunked CNN with updated config
|
||||
self.chunked_cnn = AIIAchunked(config, **kwargs)
|
||||
|
||||
def forward(self, x, depth=0):
|
||||
if depth == self.recursion_depth:
|
||||
|
@ -89,9 +115,11 @@ class AIIAresursive(AIIA):
|
|||
patches = x.unfold(2, 16, 16).unfold(3, 16, 16)
|
||||
patches = patches.contiguous().view(patches.size(0), patches.size(1), -1, 16, 16)
|
||||
processed_patches = []
|
||||
|
||||
for p in torch.split(patches, 1, dim=2):
|
||||
p = p.squeeze(2)
|
||||
pp = self.forward(p, depth + 1)
|
||||
processed_patches.append(pp)
|
||||
|
||||
combined_output = torch.mean(torch.stack(processed_patches, dim=0), dim=0)
|
||||
return combined_output
|
||||
|
|
Loading…
Reference in New Issue