fixed tests

This commit is contained in:
Falko Victor Habel 2025-03-16 12:24:26 +01:00
parent 55f00b7906
commit 47d3ee89a6
1 changed files with 218 additions and 25 deletions

View File

@ -1,11 +1,9 @@
import pytest
import torch
from unittest.mock import MagicMock, patch
from unittest.mock import MagicMock, patch, MagicMock, mock_open, call
from aiia import Pretrainer, ProjectionHead, AIIABase, AIIAConfig
from unittest.mock import patch, MagicMock
import pandas as pd
# Test the ProjectionHead class
def test_projection_head():
head = ProjectionHead(hidden_size=512)
@ -58,39 +56,234 @@ def test_process_batch(mock_process_batch):
@patch('pandas.concat')
@patch('pandas.read_parquet')
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
def test_train(mock_data_loader, mock_read_parquet, mock_concat):
# Create a real DataFrame for testing
@patch('os.path.join', return_value='mocked/path/model.pt')
@patch('builtins.print') # Add this to mock the print function
def test_train_happy_path(mock_print, mock_path_join, mock_data_loader, mock_read_parquet, mock_concat):
"""Test the train method under normal conditions with comprehensive verification."""
# Setup test data and mocks
real_df = pd.DataFrame({
'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]
})
# Configure read_parquet so that for each dataset path, .head(10000) returns real_df
mock_read_parquet.return_value.head.return_value = real_df
# When merging DataFrames, bypass type-checks by letting pd.concat just return real_df
mock_concat.return_value = real_df
# Create an instance of the Pretrainer
pretrainer = Pretrainer(model=AIIABase(config=AIIAConfig()), config=AIIAConfig())
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
# Mock the model and related components
mock_model = MagicMock()
mock_projection_head = MagicMock()
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
pretrainer.projection_head = mock_projection_head
pretrainer.optimizer = MagicMock()
# Setup the data loader mock instance with empty loaders
# Setup dataset paths and mock batch data
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
output_path = "AIIA_test"
# Create mock batch data with proper structure
mock_batch_data = {
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
}
# Configure batch loss
mock_batch_loss = torch.tensor(0.5, requires_grad=True)
loader_instance = MagicMock()
loader_instance.train_loader = [] # so the training loop is immediately skipped
loader_instance.val_loader = [] # so the validation loop is also skipped
loader_instance.train_loader = [mock_batch_data]
loader_instance.val_loader = [mock_batch_data]
mock_data_loader.return_value = loader_instance
# Patch _validate to avoid any actual validation computations.
with patch.object(Pretrainer, '_validate', return_value=0.5):
pretrainer.train(dataset_paths, num_epochs=1)
# Execute training with patched methods
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss) as mock_process_batch, \
patch.object(Pretrainer, '_validate', side_effect=[0.8, 0.3]) as mock_validate, \
patch.object(Pretrainer, 'save_losses') as mock_save_losses, \
patch('builtins.open', mock_open()):
# Verify that AIIADataLoader was instantiated exactly once...
mock_data_loader.assert_called_once()
# ...and that pd.read_parquet was called once per dataset path (i.e. 2 times in this test)
expected_calls = len(dataset_paths)
assert mock_read_parquet.call_count == expected_calls, (
f"Expected {expected_calls} calls to pd.read_parquet, got {mock_read_parquet.call_count}"
pretrainer.train(dataset_paths, output_path=output_path, num_epochs=2)
# Verify method calls
assert mock_read_parquet.call_count == len(dataset_paths)
assert mock_process_batch.call_count == 2
assert mock_validate.call_count == 2
# Check for "Best model saved!" instead of model.save()
mock_print.assert_any_call("Best model saved!")
mock_save_losses.assert_called_once()
# Verify state changes
assert len(pretrainer.train_losses) == 2
assert pretrainer.train_losses == [0.5, 0.5]
# Error cases
def test_train_no_dataset_paths():
"""Test ValueError when no dataset paths are provided."""
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
with pytest.raises(ValueError, match="No dataset paths provided"):
pretrainer.train([])
@patch('pandas.read_parquet')
def test_train_all_datasets_fail(mock_read_parquet):
"""Test handling when all datasets fail to load."""
mock_read_parquet.side_effect = Exception("Failed to load dataset")
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
dataset_paths = ['path/to/dataset1.parquet', 'path/to/dataset2.parquet']
with pytest.raises(ValueError, match="No valid datasets could be loaded"):
pretrainer.train(dataset_paths)
# Edge cases
@patch('pandas.concat')
@patch('pandas.read_parquet')
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
def test_train_empty_loaders(mock_data_loader, mock_read_parquet, mock_concat):
"""Test behavior with empty data loaders."""
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
mock_read_parquet.return_value.head.return_value = real_df
mock_concat.return_value = real_df
loader_instance = MagicMock()
loader_instance.train_loader = [] # Empty train loader
loader_instance.val_loader = [] # Empty val loader
mock_data_loader.return_value = loader_instance
mock_model = MagicMock()
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
pretrainer.projection_head = MagicMock()
pretrainer.optimizer = MagicMock()
with patch.object(Pretrainer, 'save_losses') as mock_save_losses:
pretrainer.train(['path/to/dataset.parquet'], num_epochs=1)
# Verify empty loader behavior
assert len(pretrainer.train_losses) == 1
assert pretrainer.train_losses[0] == 0.0
mock_save_losses.assert_called_once()
@patch('pandas.concat')
@patch('pandas.read_parquet')
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
def test_train_none_batch_data(mock_data_loader, mock_read_parquet, mock_concat):
"""Test behavior when batch_data is None."""
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
mock_read_parquet.return_value.head.return_value = real_df
mock_concat.return_value = real_df
loader_instance = MagicMock()
loader_instance.train_loader = [None] # Loader returns None
loader_instance.val_loader = []
mock_data_loader.return_value = loader_instance
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
pretrainer.projection_head = MagicMock()
pretrainer.optimizer = MagicMock()
with patch.object(Pretrainer, '_process_batch') as mock_process_batch, \
patch.object(Pretrainer, 'save_losses'):
pretrainer.train(['path/to/dataset.parquet'], num_epochs=1)
# Verify None batch handling
mock_process_batch.assert_not_called()
assert pretrainer.train_losses[0] == 0.0
# Parameter variations
@patch('pandas.concat')
@patch('pandas.read_parquet')
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
def test_train_with_custom_parameters(mock_data_loader, mock_read_parquet, mock_concat):
"""Test that custom parameters are properly passed through."""
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
mock_read_parquet.return_value.head.return_value = real_df
mock_concat.return_value = real_df
loader_instance = MagicMock()
loader_instance.train_loader = []
loader_instance.val_loader = []
mock_data_loader.return_value = loader_instance
pretrainer = Pretrainer(model=MagicMock(), config=AIIAConfig())
pretrainer.projection_head = MagicMock()
pretrainer.optimizer = MagicMock()
# Custom parameters
custom_output_path = "custom/output/path"
custom_column = "custom_column"
custom_batch_size = 16
custom_sample_size = 5000
with patch.object(Pretrainer, 'save_losses'):
pretrainer.train(
['path/to/dataset.parquet'],
output_path=custom_output_path,
column=custom_column,
batch_size=custom_batch_size,
sample_size=custom_sample_size
)
# Verify custom parameters were used
mock_read_parquet.return_value.head.assert_called_once_with(custom_sample_size)
assert mock_data_loader.call_args[1]['column'] == custom_column
assert mock_data_loader.call_args[1]['batch_size'] == custom_batch_size
@patch('pandas.concat')
@patch('pandas.read_parquet')
@patch('aiia.pretrain.pretrainer.AIIADataLoader')
@patch('builtins.print') # Add this to mock the print function
def test_train_validation_loss_improvement(mock_print, mock_data_loader, mock_read_parquet, mock_concat):
"""Test that model is saved only when validation loss improves."""
real_df = pd.DataFrame({'image_bytes': [torch.randn(1, 3, 224, 224).tolist()]})
mock_read_parquet.return_value.head.return_value = real_df
mock_concat.return_value = real_df
# Create mock batch data with proper structure
mock_batch_data = {
'denoise': (torch.randn(2, 3, 32, 32), torch.randn(2, 3, 32, 32)),
'rotate': (torch.randn(2, 3, 32, 32), torch.tensor([0, 1]))
}
loader_instance = MagicMock()
loader_instance.train_loader = [mock_batch_data]
loader_instance.val_loader = [mock_batch_data]
mock_data_loader.return_value = loader_instance
mock_model = MagicMock()
pretrainer = Pretrainer(model=mock_model, config=AIIAConfig())
pretrainer.projection_head = MagicMock()
pretrainer.optimizer = MagicMock()
# Initialize the best validation loss
pretrainer.best_val_loss = float('inf')
mock_batch_loss = torch.tensor(0.5, requires_grad=True)
# Test improving validation loss
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss), \
patch.object(Pretrainer, '_validate', side_effect=[3.0, 2.0, 1.0]), \
patch.object(Pretrainer, 'save_losses'):
pretrainer.train(['path/to/dataset.parquet'], num_epochs=3)
# Check for "Best model saved!" 3 times
assert mock_print.call_args_list.count(call("Best model saved!")) == 3
# Reset for next test
mock_print.reset_mock()
pretrainer.train_losses = []
# Reset best validation loss for the second test
pretrainer.best_val_loss = float('inf')
# Test fluctuating validation loss
with patch.object(Pretrainer, '_process_batch', return_value=mock_batch_loss), \
patch.object(Pretrainer, '_validate', side_effect=[3.0, 4.0, 2.0]), \
patch.object(Pretrainer, 'save_losses'):
pretrainer.train(['path/to/dataset.parquet'], num_epochs=3)
# Should print "Best model saved!" only on first and third epochs
assert mock_print.call_args_list.count(call("Best model saved!")) == 2
@patch('aiia.pretrain.pretrainer.Pretrainer._process_batch')
def test_validate(mock_process_batch):