updated version to support proper saving when pretraining

This commit is contained in:
Falko Victor Habel 2025-02-27 18:56:42 +01:00
parent 1faf34749a
commit 3cb2a18ad9
4 changed files with 13 additions and 14 deletions

View File

@ -1,21 +1,18 @@
data_path1 = "/root/training_data/vision-dataset/images_checkpoint.parquet"
data_path2 = "/root/training_data/vision-dataset/vec_images_dataset.parquet"
from aiia.model import AIIABase
from aiia.model.config import AIIAConfig
from aiia.model import AIIAConfig
from aiia.pretrain import Pretrainer
# Create your model
config = AIIAConfig(model_name="AIIA-Base-512x10k-small", num_hidden_layers=6, hidden_size=256)
config = AIIAConfig(model_name="AIIA-Base-512x20k")
model = AIIABase(config)
# Initialize pretrainer with the model
pretrainer = Pretrainer(model, learning_rate=config.learning_rate, config=config)
pretrainer = Pretrainer(model, learning_rate=1e-4)
# List of dataset paths
dataset_paths = [
data_path1,
data_path2
"/path/to/dataset1.parquet",
"/path/to/dataset2.parquet"
]
# Start training with multiple datasets

View File

@ -7,14 +7,16 @@ line-length = 88
target-version = ['py37']
include = '\.pyi?$'
[project]
name = "aiia"
version = "0.1.1"
version = "0.1.2"
description = "AIIA Deep Learning Model Implementation"
readme = "README.md"
authors = [
{ name="Falko Habel", email="falko.habel@gmx.de" }
{name = "Falko Habel", email = "falko.habel@gmx.de"}
]
license = {text = "CC BY-NC 4.0"}
dependencies = [
"torch>=2.5.0",
"numpy",
@ -25,6 +27,6 @@ dependencies = [
requires-python = ">=3.7"
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"License :: OSI Approved :: CC BY-NC 4.0 License",
"Operating System :: OS Independent"
]

View File

@ -4,4 +4,4 @@ from .data.DataLoader import DataLoader
from .pretrain.pretrainer import Pretrainer, ProjectionHead
__version__ = "0.1.0"
__version__ = "0.1.2"

View File

@ -112,7 +112,7 @@ class Pretrainer:
return batch_loss
def train(self, dataset_paths, column="image_bytes", num_epochs=3, batch_size=2, sample_size=10000):
def train(self, dataset_paths,output_path:str="AIIA", column="image_bytes", num_epochs=3, batch_size=2, sample_size=10000):
"""
Train the model using multiple specified datasets.
@ -186,7 +186,7 @@ class Pretrainer:
if val_loss < best_val_loss:
best_val_loss = val_loss
self.model.save("AIIA-base-512")
self.model.save(output_path)
print("Best model saved!")
self.save_losses('losses.csv')