Compare commits

...

2 Commits

Author SHA1 Message Date
Falko Victor Habel 7881302e6c updated readme to give better explanation
Gitea Actions For Fabelous-Math / Explore-Gitea-Actions (push) Has been cancelled Details
2025-03-14 14:26:13 +01:00
Falko Victor Habel d80c0d55f6 improved example file 2025-03-14 14:25:59 +01:00
2 changed files with 21 additions and 7 deletions

View File

@ -17,14 +17,21 @@ pip install git+https://gitea.fabelous.app/Fabel/fabelous-math.git
To use the functions provided by Fabelous Math in your Python code, you can import them as follows:
```python
from fabelous_math import is_even, is_odd
from fabelous_math import is_even, is_odd, rooting, approximate_pi
# Example usage:
number = 42
print(f"Is {number} even? {is_even(number)}")
print(f"Is {number} odd? {is_odd(number)}")
```
# Extended feature for rooting with a specified root
root = 4
number = 16
print(f"Rooting {number} to the power of {root}: {rooting(number, root)}")
# Extended feature for approximate_pi with additional parameters if needed
precision = 10000000
print(f"Approximate Pi with precision {precision}: {approximate_pi(precision)}")
```
## Performance Comparison
To understand the performance of `fabelous-math` functions, I conducted a series of tests comparing my methods with traditional modulo operations. Below are the results:

View File

@ -1,7 +1,14 @@
from fabelous_math import is_even, is_odd, rooting, approximate_pi
print(approximate_pi(10000000))
number = 42
print(f"Is {number} even? {is_even(number)}")
print(f"Is {number} odd? {is_odd(number)}")
print(rooting(0.5))
print(is_even(5))
print(is_odd(19))
# Extended feature for rooting with a specified root
root = 4
number = 16
print(f"Rooting {number} to the power of {root}: {rooting(number, root)}")
# Extended feature for approximate_pi with additional parameters if needed
precision = 10000000
print(f"Approximate Pi with precision {precision}: {approximate_pi(precision)}")