Compare commits
2 Commits
70b40cdeeb
...
7881302e6c
Author | SHA1 | Date |
---|---|---|
|
7881302e6c | |
|
d80c0d55f6 |
13
README.md
13
README.md
|
@ -17,14 +17,21 @@ pip install git+https://gitea.fabelous.app/Fabel/fabelous-math.git
|
|||
To use the functions provided by Fabelous Math in your Python code, you can import them as follows:
|
||||
|
||||
```python
|
||||
from fabelous_math import is_even, is_odd
|
||||
from fabelous_math import is_even, is_odd, rooting, approximate_pi
|
||||
|
||||
# Example usage:
|
||||
number = 42
|
||||
print(f"Is {number} even? {is_even(number)}")
|
||||
print(f"Is {number} odd? {is_odd(number)}")
|
||||
```
|
||||
|
||||
# Extended feature for rooting with a specified root
|
||||
root = 4
|
||||
number = 16
|
||||
print(f"Rooting {number} to the power of {root}: {rooting(number, root)}")
|
||||
|
||||
# Extended feature for approximate_pi with additional parameters if needed
|
||||
precision = 10000000
|
||||
print(f"Approximate Pi with precision {precision}: {approximate_pi(precision)}")
|
||||
```
|
||||
## Performance Comparison
|
||||
|
||||
To understand the performance of `fabelous-math` functions, I conducted a series of tests comparing my methods with traditional modulo operations. Below are the results:
|
||||
|
|
15
example.py
15
example.py
|
@ -1,7 +1,14 @@
|
|||
from fabelous_math import is_even, is_odd, rooting, approximate_pi
|
||||
|
||||
print(approximate_pi(10000000))
|
||||
number = 42
|
||||
print(f"Is {number} even? {is_even(number)}")
|
||||
print(f"Is {number} odd? {is_odd(number)}")
|
||||
|
||||
print(rooting(0.5))
|
||||
print(is_even(5))
|
||||
print(is_odd(19))
|
||||
# Extended feature for rooting with a specified root
|
||||
root = 4
|
||||
number = 16
|
||||
print(f"Rooting {number} to the power of {root}: {rooting(number, root)}")
|
||||
|
||||
# Extended feature for approximate_pi with additional parameters if needed
|
||||
precision = 10000000
|
||||
print(f"Approximate Pi with precision {precision}: {approximate_pi(precision)}")
|
Loading…
Reference in New Issue