Model Version 1.0
This commit is contained in:
parent
5f471624a0
commit
4d381a8682
71
README.md
71
README.md
|
@ -1,3 +1,72 @@
|
|||
# VeraMind
|
||||
|
||||
Open Weights Fake News Detection Model and Inference
|
||||
|
||||
The VeraMind is an open-source Python application built using the Hugging Face Transformers library and PyTorch. It leverages a pre-trained model (`VeraMind-Mini`) to predict whether a given news article is real or fake with a confidence score.
|
||||
|
||||
This project is licensed under the [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/) license. You are free to use and share this model privately, but you must give appropriate credit, not use it for commercial purposes, and not distribute derivative works.
|
||||
|
||||
**Note:** This is a machine learning model and may make mistakes. It should not replace your own critical thinking when evaluating news authenticity. Always verify information from multiple reliable sources.
|
||||
|
||||
## Features
|
||||
|
||||
- Predicts if a given news article is real or fake.
|
||||
- Provides a confidence score for the prediction.
|
||||
- Utilizes the Hugging Face Transformers library for easy integration with other NLP models.
|
||||
|
||||
## Installation
|
||||
|
||||
1. Clone this repository:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/yourusername/VeraMind.git
|
||||
cd VeraMind
|
||||
```
|
||||
|
||||
2. Install the required dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Predicting News Authenticity
|
||||
|
||||
Here's how you can use the model to predict if a news article is real or fake:
|
||||
|
||||
```python
|
||||
from src.Inference import VeraMindInference
|
||||
|
||||
# Load the model
|
||||
model = VeraMindInference("path/to/VeraMind-Mini")
|
||||
|
||||
# Example news article text
|
||||
text = "This is an example News Article"
|
||||
|
||||
# Predict if the news is real or fake
|
||||
result = model.predict(text)
|
||||
|
||||
print(result)
|
||||
```
|
||||
|
||||
The output will be a dictionary containing the result ("REAL" or "FAKE") and the confidence score:
|
||||
|
||||
```python
|
||||
{'result': 'FAKE', 'confidence': 0.9990140199661255}
|
||||
```
|
||||
|
||||
## Model Architecture
|
||||
|
||||
The `VeraMind-Mini` model used in this application is a fine-tuned version of the [DistilBERT](https://huggingface.co/distilbert-base-uncased) model for binary text classification. It's designed to distinguish between real and fake news articles.
|
||||
|
||||
## Disclaimer
|
||||
|
||||
This project is provided as-is, without any express or implied warranty. The maintainers are not responsible for any damages arising from the use of this software.
|
||||
|
||||
Always remember that machine learning models can make mistakes, so use this tool responsibly and critically evaluate its predictions.
|
||||
|
||||
## Citation
|
||||
|
||||
If you use this model in your research, please cite it as follows:
|
||||
|
||||
> **VeraMind News Authenticity Checker** (2024). Retrieved from https://gitea.fabelous.app/Fabel/VeraMind by Falko Habel
|
|
@ -0,0 +1,15 @@
|
|||
from src.Inference import VeraMindInference
|
||||
|
||||
|
||||
# load model
|
||||
model = VeraMindInference("path/to/VeraMind-Mini")
|
||||
|
||||
|
||||
text = "This is a example News Article"
|
||||
|
||||
# predict if News are reel or Fake
|
||||
result = model.predict(text)
|
||||
|
||||
# Example Output
|
||||
# {'result': 'FAKE', 'confidence': 0.9990140199661255}
|
||||
print(result)
|
|
@ -0,0 +1,2 @@
|
|||
torch
|
||||
transformers
|
|
@ -0,0 +1,38 @@
|
|||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
class VeraMindInference:
|
||||
def __init__(self, model_path, max_len=512):
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
||||
self.model.to(self.device)
|
||||
self.model.eval()
|
||||
self.max_len = max_len
|
||||
|
||||
def predict(self, text):
|
||||
encoding = self.tokenizer.encode_plus(
|
||||
text,
|
||||
add_special_tokens=True,
|
||||
max_length=self.max_len,
|
||||
return_token_type_ids=False,
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors='pt',
|
||||
)
|
||||
|
||||
input_ids = encoding['input_ids'].to(self.device)
|
||||
attention_mask = encoding['attention_mask'].to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = self.model(input_ids, attention_mask=attention_mask).logits
|
||||
prediction = torch.sigmoid(outputs).cpu().numpy()[0][0]
|
||||
|
||||
is_fake = prediction >= 0.5
|
||||
confidence = prediction if is_fake else 1 - prediction
|
||||
|
||||
return {
|
||||
"result": "FAKE" if is_fake else "REAL",
|
||||
"confidence": float(confidence)
|
||||
}
|
Loading…
Reference in New Issue