develop #6
175
src/test.py
175
src/test.py
|
@ -1,175 +0,0 @@
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
def quicksort(arr):
|
||||
if len(arr) <= 1:
|
||||
return arr
|
||||
else:
|
||||
pivot = arr[len(arr)//2] # choose the middle element as the pivot
|
||||
left_partition = [i for i in arr if i < pivot]
|
||||
right_partition = [i for i in arr if i > pivot]
|
||||
|
||||
return quicksort(left_partition) + [pivot] + quicksort(right_partition)
|
||||
|
||||
|
||||
def quicksort(arr):
|
||||
if len(arr) <= 1:
|
||||
return arr
|
||||
mid = int(len(arr)/2)
|
||||
left = [item for i, item in enumerate(arr) if i<mid]
|
||||
right = [item for i, item in enumerate(arr) if i>=mid]
|
||||
|
||||
return quicksort(left)+[arr[mid]]+quicksort(right)
|
||||
def is_fibunccai(num):
|
||||
num = str(num)
|
||||
size = len(num)
|
||||
|
||||
# Create 1s array for DP table to store last 10 digits of Fibonacci sequence
|
||||
fib = [1] * 10
|
||||
|
||||
# Initialize last two numbers in Fibonacci sequence as 1 and 2
|
||||
def binary_search(arr, num) :
|
||||
left = 0; right = len(arr) - 1
|
||||
|
||||
while (left <= right) :
|
||||
mid = int((right + left) / 2)
|
||||
|
||||
if arr[mid] == num :
|
||||
return mid
|
||||
|
||||
elif arr[mid] > num :
|
||||
right = mid - 1
|
||||
|
||||
else:
|
||||
left = mid + 1
|
||||
|
||||
return -1
|
||||
|
||||
arr = [2, 4, 5, 7, 8, 9, 10, 11, 12]
|
||||
num = 9
|
||||
index = binary_search(arr, num)
|
||||
|
||||
if index!= -1:
|
||||
print("Element is present at ", index)
|
||||
else:
|
||||
print("Element is not present in array")
|
||||
|
||||
def quicksort(arr):
|
||||
if len(arr) <= 1:
|
||||
return arr
|
||||
|
||||
pivot = arr[len(arr)//2]
|
||||
left_partition, right_partition = [], []
|
||||
|
||||
for i in range(len(arr)):
|
||||
if arr[i] < pivot:
|
||||
left_partition.append(arr[i])
|
||||
else:
|
||||
right_partition.append(arr[i])
|
||||
|
||||
return quicksort(left_partition) + [pivot] + quicksort(right_partition)
|
||||
|
||||
def merge_sort(arr):
|
||||
if len(arr) > 1:
|
||||
mid = len(arr) // 2
|
||||
left_half = arr[:mid]
|
||||
right_half = arr[mid:]
|
||||
|
||||
# Recursive call for sorting the two halves
|
||||
merge_sort(left_half)
|
||||
merge_sort(right_half)
|
||||
|
||||
i = j = k = 0
|
||||
|
||||
while i < len(left_half) and j < len(right_half):
|
||||
if left_half[i] < right_half[j]:
|
||||
arr[k] = left_half[i]
|
||||
i += 1
|
||||
else:
|
||||
arr[k] = right_half[j]
|
||||
j += 1
|
||||
k += 1
|
||||
|
||||
# Checking if any element was left
|
||||
while i < len(left_half):
|
||||
arr[k] = left_half[i]
|
||||
i += 1
|
||||
k += 1
|
||||
|
||||
while j < len(right_half):
|
||||
arr[k] = right_half[j]
|
||||
j += 1
|
||||
k += 1
|
||||
# Driver code to test above
|
||||
arr = [24, 32, 10, 67, 55, 38, 19]
|
||||
print(arr)
|
||||
merge_sort(arr)
|
||||
|
||||
print("Sorted array is:")
|
||||
print(arr)
|
||||
r) // 2
|
||||
left_half = arr[:mid]
|
||||
right_half = arr[mid:]
|
||||
|
||||
# Recursive call for sorting the two halves
|
||||
merge_sort(left_half)
|
||||
merge_sort(right_half)
|
||||
|
||||
i = j = k = 0
|
||||
|
||||
while i < len(left_half) and j < len(right_half):
|
||||
if left_half[i] < right_half[j]:
|
||||
arr[k] = left_half[i]
|
||||
i += 1
|
||||
else:
|
||||
arr[k] = right_half[j]
|
||||
j += 1
|
||||
k += 1
|
||||
|
||||
# Checking if any element was left
|
||||
while i < len(left_half):
|
||||
arr[k] = left_half[i]
|
||||
i += 1
|
||||
k += 1
|
||||
|
||||
while j < len(right_half):
|
||||
arr[k] = right_half[j]
|
||||
j += 1
|
||||
k += 1
|
||||
# Driver code to test above
|
||||
arr = [24, 32, 10, 67, 55, 38, 19]
|
||||
print(arr)
|
||||
merge_sort(arr)
|
||||
|
||||
print("Sorted array is:")
|
||||
print(arr)
|
||||
|
||||
def is_fibuncacci(num):
|
||||
if (num < 2):
|
||||
return False
|
||||
|
||||
# Base case
|
||||
if num == 1:
|
||||
return True
|
||||
|
||||
for i in range(2, num + 1):
|
||||
if is_fibonacci(i) and is_fibonacci(num - i):
|
||||
return True
|
||||
|
||||
# If we reach here, then n
|
||||
|
||||
|
||||
# Base case
|
||||
if num == 1:
|
||||
return True
|
||||
|
||||
for i in range(2, num + 1):
|
||||
if is_fibonacci(i) and is_fibonacci(num - i):
|
||||
return True
|
||||
|
||||
# If we reach here, then n
|
||||
|
||||
|
||||
def quicksort(arr)
|
Loading…
Reference in New Issue