settings only update on config change, better progress reporting, changed name, added README and icon, added categories & keywords, changed activation event

This commit is contained in:
Nathan Hedge 2023-12-20 18:27:42 -06:00
parent fd0f553738
commit 4f26bf3af3
No known key found for this signature in database
GPG Key ID: 1ADBA36D6E304C5C
4 changed files with 110 additions and 53 deletions

View File

@ -1,3 +1,17 @@
# Ollama Coder
# Ollama Autocoder
An ollama-based autocompletion engine.
A simple to use Ollama autocompletion engine with options exposed.
## Requirements
- Ollama must be serving on the API endpoint applied in settings
- For installation of Ollama, visit [ollama.ai](https://ollama.ai)
- Ollama must have the model applied in settings installed.
- For fastest results, an Nvidia GPU or Apple Silicon is recommended. CPU still works on small models.
## How to Use
1. In a text document, press space or go to a new line. The option `Autocomplete with Ollama` will appear. Press enter to start generation.
2. After startup, the tokens will be streamed to your cursor.
3. To stop the generation early, press the "Cancel" button on the "Ollama Autocoder" notification
4. Once generation stops, the notification will disappear.

BIN
icon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 188 KiB

View File

@ -1,48 +1,68 @@
{
"name": "ollama-coder",
"displayName": "Ollama Coder",
"name": "ollama-autocoder",
"displayName": "Ollama Autocoder",
"description": "An Ollama autocompletion engine with options exposed",
"version": "0.0.1",
"icon": "icon.png",
"publisher": "10nates",
"license": "MIT",
"repository": {
"type": "git",
"url": "https://github.com/10Nates/ollama-coder"
"url": "https://github.com/10Nates/ollama-autocoder"
},
"engines": {
"vscode": "^1.73.0"
},
"categories": [
"Other"
"Machine Learning",
"Snippets",
"Programming Languages"
],
"keywords": [
"llama",
"ollama",
"gpt",
"coding",
"autocomplete",
"open source",
"assistant",
"ai",
"llm"
],
"activationEvents": [
"*"
"onStartupFinished"
],
"main": "./out/extension.js",
"contributes": {
"configuration": {
"title": "Ollama Coder",
"title": "Ollama Autocoder",
"properties": {
"ollama-coder.endpoint": {
"ollama-autocoder.endpoint": {
"type": "string",
"default": "http://localhost:11434/api/generate",
"description": "The endpoint of the ollama REST API"
},
"ollama-coder.model": {
"ollama-autocoder.model": {
"type": "string",
"default": "deepseek-coder",
"default": "openhermes2.5-mistral:7b-q4_K_M",
"description": "The model to use for generating completions"
},
"ollama-coder.system-message": {
"ollama-autocoder.raw-input": {
"type": "boolean",
"default": false,
"description": "Prompt the model without formatting. Disables system message."
},
"ollama-autocoder.system-message": {
"type": "string",
"default": "You are a code autocompletion engine. Respond with a continuation of the code provided and nothing else. Code should not be in a code block. Anything that is not code should be written as a code comment.",
"description": "The system message to use for code completions. Type DEFAULT for Makefile."
},
"ollama-coder.max-tokens-predicted": {
"ollama-autocoder.max-tokens-predicted": {
"type": "integer",
"default": 500,
"description": "The maximum number of tokens generated by the model."
},
"ollama-coder.prompt-window-size": {
"ollama-autocoder.prompt-window-size": {
"type": "integer",
"default": 2000,
"description": "The size of the prompt in characters. NOT tokens, so can be set about 1.5-2x the max tokens of the model (varies)."

View File

@ -1,36 +1,56 @@
// Significant help from GPT4
import * as vscode from "vscode";
import axios, { AxiosResponse } from "axios";
import axios from "axios";
const VSConfig = vscode.workspace.getConfiguration("ollama-coder");
const apiEndpoint: string = VSConfig.get("apiEndpoint") || "http://localhost:11434/api/generate";
const apiModel: string = VSConfig.get("model") || "deepseek-coder";
let apiSystemMessage: string | undefined = VSConfig.get("system-message");
if (apiSystemMessage == "DEFAULT") apiSystemMessage = undefined;
const numPredict: number = VSConfig.get("max-tokens-predicted") || 500;
const promptWindowSize: number = VSConfig.get("prompt-window-size") || 2000;
let VSConfig: vscode.WorkspaceConfiguration;
let apiEndpoint: string;
let apiModel: string;
let apiSystemMessage: string | undefined;
let numPredict: number;
let promptWindowSize: number;
let rawInput: boolean;
// Function called on ollama-coder.autocomplete
function updateVSConfig() {
VSConfig = vscode.workspace.getConfiguration("ollama-autocoder");
apiEndpoint = VSConfig.get("apiEndpoint") || "http://localhost:11434/api/generate";
apiModel = VSConfig.get("model") || "openhermes2.5-mistral:7b-q4_K_M";
apiSystemMessage = VSConfig.get("system-message");
numPredict = VSConfig.get("max-tokens-predicted") || 500;
promptWindowSize = VSConfig.get("prompt-window-size") || 2000;
rawInput = VSConfig.get("raw-input") || false;
if (apiSystemMessage == "DEFAULT" || rawInput) apiSystemMessage = undefined;
}
updateVSConfig();
// No need for restart for any of these settings
vscode.workspace.onDidChangeConfiguration(updateVSConfig);
// Function called on ollama-autocoder.autocomplete
async function autocompleteCommand(document: vscode.TextDocument, position: vscode.Position, prompt: string, cancellationToken: vscode.CancellationToken) {
// Show a progress message
vscode.window.withProgress(
{
location: vscode.ProgressLocation.Notification,
title: "Getting a completion from Ollama...",
title: "Ollama Autocoder",
cancellable: true,
},
async (progress, progressCancellationToken) => {
try {
progress.report({ message: "Starting model..." });
// Make a request to the ollama.ai REST API
const response = await axios.post(apiEndpoint, {
model: apiModel, // Change this to the model you want to use
prompt: prompt,
stream: true,
system: apiSystemMessage,
raw: rawInput,
options: {
num_predict: numPredict
},
}
}, {
cancelToken: new axios.CancelToken((c) => {
const cancelPost = function () {
@ -48,6 +68,8 @@ async function autocompleteCommand(document: vscode.TextDocument, position: vsco
let currentPosition = position;
response.data.on('data', async (d: Uint8Array) => {
progress.report({ message: "Generating..." });
// Get a completion from the response
const completion: string = JSON.parse(d.toString()).response;
@ -75,7 +97,7 @@ async function autocompleteCommand(document: vscode.TextDocument, position: vsco
currentPosition = newPosition;
// completion bar
progress.report({ increment: 1 / (numPredict/100) });
progress.report({ message: "Generating...", increment: 1 / (numPredict/100) });
// move cursor
const editor = vscode.window.activeTextEditor;
@ -97,12 +119,13 @@ async function autocompleteCommand(document: vscode.TextDocument, position: vsco
vscode.window.showErrorMessage(
"Ollama encountered an error: " + err.message
);
console.log(err);
}
}
);
}
// This method is called when your extension is activated
// This method is called when extension is activated
function activate(context: vscode.ExtensionContext) {
// Register a completion provider for JavaScript files
const provider = vscode.languages.registerCompletionItemProvider("*", {
@ -120,7 +143,7 @@ function activate(context: vscode.ExtensionContext) {
item.documentation = new vscode.MarkdownString('Press `Enter` to get a completion from Ollama');
// Set the command to trigger the completion
item.command = {
command: 'ollama-coder.autocomplete',
command: 'ollama-autocoder.autocomplete',
title: 'Ollama',
arguments: [document, position, prompt, cancellationToken]
};
@ -137,7 +160,7 @@ function activate(context: vscode.ExtensionContext) {
// Register a command for getting a completion from Ollama
const disposable = vscode.commands.registerCommand(
"ollama-coder.autocomplete",
"ollama-autocoder.autocomplete",
autocompleteCommand
);
@ -145,7 +168,7 @@ function activate(context: vscode.ExtensionContext) {
context.subscriptions.push(disposable);
}
// This method is called when your extension is deactivated
// This method is called when extension is deactivated
function deactivate() { }
module.exports = {