175 lines
4.3 KiB
Python
175 lines
4.3 KiB
Python
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def quicksort(arr):
|
||
|
if len(arr) <= 1:
|
||
|
return arr
|
||
|
else:
|
||
|
pivot = arr[len(arr)//2] # choose the middle element as the pivot
|
||
|
left_partition = [i for i in arr if i < pivot]
|
||
|
right_partition = [i for i in arr if i > pivot]
|
||
|
|
||
|
return quicksort(left_partition) + [pivot] + quicksort(right_partition)
|
||
|
|
||
|
|
||
|
def quicksort(arr):
|
||
|
if len(arr) <= 1:
|
||
|
return arr
|
||
|
mid = int(len(arr)/2)
|
||
|
left = [item for i, item in enumerate(arr) if i<mid]
|
||
|
right = [item for i, item in enumerate(arr) if i>=mid]
|
||
|
|
||
|
return quicksort(left)+[arr[mid]]+quicksort(right)
|
||
|
def is_fibunccai(num):
|
||
|
num = str(num)
|
||
|
size = len(num)
|
||
|
|
||
|
# Create 1s array for DP table to store last 10 digits of Fibonacci sequence
|
||
|
fib = [1] * 10
|
||
|
|
||
|
# Initialize last two numbers in Fibonacci sequence as 1 and 2
|
||
|
def binary_search(arr, num) :
|
||
|
left = 0; right = len(arr) - 1
|
||
|
|
||
|
while (left <= right) :
|
||
|
mid = int((right + left) / 2)
|
||
|
|
||
|
if arr[mid] == num :
|
||
|
return mid
|
||
|
|
||
|
elif arr[mid] > num :
|
||
|
right = mid - 1
|
||
|
|
||
|
else:
|
||
|
left = mid + 1
|
||
|
|
||
|
return -1
|
||
|
|
||
|
arr = [2, 4, 5, 7, 8, 9, 10, 11, 12]
|
||
|
num = 9
|
||
|
index = binary_search(arr, num)
|
||
|
|
||
|
if index!= -1:
|
||
|
print("Element is present at ", index)
|
||
|
else:
|
||
|
print("Element is not present in array")
|
||
|
|
||
|
def quicksort(arr):
|
||
|
if len(arr) <= 1:
|
||
|
return arr
|
||
|
|
||
|
pivot = arr[len(arr)//2]
|
||
|
left_partition, right_partition = [], []
|
||
|
|
||
|
for i in range(len(arr)):
|
||
|
if arr[i] < pivot:
|
||
|
left_partition.append(arr[i])
|
||
|
else:
|
||
|
right_partition.append(arr[i])
|
||
|
|
||
|
return quicksort(left_partition) + [pivot] + quicksort(right_partition)
|
||
|
|
||
|
def merge_sort(arr):
|
||
|
if len(arr) > 1:
|
||
|
mid = len(arr) // 2
|
||
|
left_half = arr[:mid]
|
||
|
right_half = arr[mid:]
|
||
|
|
||
|
# Recursive call for sorting the two halves
|
||
|
merge_sort(left_half)
|
||
|
merge_sort(right_half)
|
||
|
|
||
|
i = j = k = 0
|
||
|
|
||
|
while i < len(left_half) and j < len(right_half):
|
||
|
if left_half[i] < right_half[j]:
|
||
|
arr[k] = left_half[i]
|
||
|
i += 1
|
||
|
else:
|
||
|
arr[k] = right_half[j]
|
||
|
j += 1
|
||
|
k += 1
|
||
|
|
||
|
# Checking if any element was left
|
||
|
while i < len(left_half):
|
||
|
arr[k] = left_half[i]
|
||
|
i += 1
|
||
|
k += 1
|
||
|
|
||
|
while j < len(right_half):
|
||
|
arr[k] = right_half[j]
|
||
|
j += 1
|
||
|
k += 1
|
||
|
# Driver code to test above
|
||
|
arr = [24, 32, 10, 67, 55, 38, 19]
|
||
|
print(arr)
|
||
|
merge_sort(arr)
|
||
|
|
||
|
print("Sorted array is:")
|
||
|
print(arr)
|
||
|
r) // 2
|
||
|
left_half = arr[:mid]
|
||
|
right_half = arr[mid:]
|
||
|
|
||
|
# Recursive call for sorting the two halves
|
||
|
merge_sort(left_half)
|
||
|
merge_sort(right_half)
|
||
|
|
||
|
i = j = k = 0
|
||
|
|
||
|
while i < len(left_half) and j < len(right_half):
|
||
|
if left_half[i] < right_half[j]:
|
||
|
arr[k] = left_half[i]
|
||
|
i += 1
|
||
|
else:
|
||
|
arr[k] = right_half[j]
|
||
|
j += 1
|
||
|
k += 1
|
||
|
|
||
|
# Checking if any element was left
|
||
|
while i < len(left_half):
|
||
|
arr[k] = left_half[i]
|
||
|
i += 1
|
||
|
k += 1
|
||
|
|
||
|
while j < len(right_half):
|
||
|
arr[k] = right_half[j]
|
||
|
j += 1
|
||
|
k += 1
|
||
|
# Driver code to test above
|
||
|
arr = [24, 32, 10, 67, 55, 38, 19]
|
||
|
print(arr)
|
||
|
merge_sort(arr)
|
||
|
|
||
|
print("Sorted array is:")
|
||
|
print(arr)
|
||
|
|
||
|
def is_fibuncacci(num):
|
||
|
if (num < 2):
|
||
|
return False
|
||
|
|
||
|
# Base case
|
||
|
if num == 1:
|
||
|
return True
|
||
|
|
||
|
for i in range(2, num + 1):
|
||
|
if is_fibonacci(i) and is_fibonacci(num - i):
|
||
|
return True
|
||
|
|
||
|
# If we reach here, then n
|
||
|
|
||
|
|
||
|
# Base case
|
||
|
if num == 1:
|
||
|
return True
|
||
|
|
||
|
for i in range(2, num + 1):
|
||
|
if is_fibonacci(i) and is_fibonacci(num - i):
|
||
|
return True
|
||
|
|
||
|
# If we reach here, then n
|
||
|
|
||
|
|
||
|
def quicksort(arr)
|