updated code
Gitea Actions Demo / Explore-Gitea-Actions (push) Failing after 5m27s Details

This commit is contained in:
Falko Victor Habel 2024-12-05 09:05:17 +01:00
parent 30c0091795
commit f6e12e0469
4 changed files with 13 additions and 16 deletions

View File

@ -40,4 +40,4 @@ To use the Fake News Checker application, follow these steps:
## License
This application is licensed under the MIT license. See the [LICENSE](LICENSE) file for more details.
This application is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International. See the [LICENSE](LICENSE) file for more details.

BIN
docs/use-case-diagram.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

View File

@ -1,4 +1,5 @@
from langchain_community.llms import Ollama
from langchain_ollama import ChatOllama
from langchain_core.messages import AIMessage
import os
class ArticleRater:
@ -6,6 +7,8 @@ class ArticleRater:
self.client = "https://ai.fabelous.app/v1/ollama/generic"
self.token = self._get_token()
self.headers = {"Authorization": f"Token {self.token}"}
self.model = "phi3.5:3.8b-mini-instruct-q4_K_M"
self.llm = ChatOllama(model=self.model, client_kwargs={'headers': self.headers}, base_url=self.client)
def _get_token(self):
if os.path.exists("Token/Token.txt"):
@ -15,22 +18,16 @@ class ArticleRater:
return None
def get_response(self, article, result, confidence):
ollama_params = {
"base_url": self.client,
"model": "mistral-nemo:12b-instruct-2407-q8_0",
"headers": self.headers,
"system": """Ein Mashine Learning Model hat einen Text bewertet, ob es sich um FakeNews handelt oder um Reale News.
messages = [
("system", """Ein Mashine Learning Model hat einen Text bewertet, ob es sich um FakeNews handelt oder um Reale News.
Erkläre in 1-2 Sätzen warum dieses Modell zu dieser Entscheidung.
DU SOLLST KEINE ÜBERSCHRIFTEN oder ähnliches ERKLÄREN. Du erhählst einen TEXT und sollst erklären wie das RESULTAT zustande kam"""
}
DU SOLLST KEINE ÜBERSCHRIFTEN oder ähnliches ERKLÄREN. Du erhählst einen TEXT und sollst erklären wie das RESULTAT zustande kam"""),
("human", f"{article}, result: {result}, confidence {confidence}")
]
message = (f"{article}, result: {result}, confidence {confidence}")
# Initialize the Ollama object with the prepared parameters
llm = Ollama(**ollama_params)
# Return the response stream
return llm.stream(message)
return self.llm.stream(messages)
# Usage
if __name__ == "__main__":
@ -43,4 +40,4 @@ if __name__ == "__main__":
# Capture the stream response
response_stream = article_rater.get_response(article, result, confidence=confidence)
for chunk in response_stream:
print(chunk, end='', flush=True)
print(chunk.content, end="")

View File

@ -67,7 +67,7 @@ class MainFrameController:
response_stream = self.rater.get_response(text_data.text, text_data.result, confidence)
for chunk in response_stream:
self.frame.output_textbox.insert("end", chunk)
self.frame.output_textbox.insert("end", chunk.content)
self.frame.output_textbox.see("end")
self.frame.update_idletasks()