From 06d91153a2190c88bed1c89898d0ff8ab82004c7 Mon Sep 17 00:00:00 2001 From: Falko Habel Date: Wed, 16 Oct 2024 09:26:14 +0200 Subject: [PATCH] added really good token checking --- .gitignore | 2 +- Token/.gitignore | 0 src/Ai/llm.py | 8 ++++++-- src/controller/mainFrameController.py | 3 +-- 4 files changed, 8 insertions(+), 5 deletions(-) create mode 100644 Token/.gitignore diff --git a/.gitignore b/.gitignore index aa85191..6c16453 100644 --- a/.gitignore +++ b/.gitignore @@ -155,7 +155,7 @@ cython_debug/ #ML VeraMind-Mini/ -Token.py +Token.txt # OS generated files # ###################### diff --git a/Token/.gitignore b/Token/.gitignore new file mode 100644 index 0000000..e69de29 diff --git a/src/Ai/llm.py b/src/Ai/llm.py index 7f3a4ec..bf06849 100644 --- a/src/Ai/llm.py +++ b/src/Ai/llm.py @@ -1,11 +1,15 @@ from langchain_community.llms import Ollama -from Ai.Token import get_token + class ArticleRater: def __init__(self): self.client = "https://ai.fabelous.app/v1/ollama/generic" - self.headers = {"Authorization": f"Token {get_token()}"} + self.token = self._get_token() + self.headers = {"Authorization": f"Token {self.token}"} + def _get_token(self): + with open("Token/Token.txt", "r") as t: + return t.readline().strip() def get_response(self, article, result, confidence): ollama_params = { "base_url": self.client, diff --git a/src/controller/mainFrameController.py b/src/controller/mainFrameController.py index 9c233cc..7656252 100644 --- a/src/controller/mainFrameController.py +++ b/src/controller/mainFrameController.py @@ -7,7 +7,6 @@ from utils.database.database import FakeNewsChecker from models.provider import Provider from collections import Counter from Ai.llm import ArticleRater -from Ai.Token import get_token class MainFrameController: @@ -63,7 +62,7 @@ class MainFrameController: confidence_color = "green" if confidence > 80 else ("orange" if confidence > 50 else "red") self.frame.confidence_label.configure(fg_color=confidence_color) - if get_token().strip(): + if self.rater.token: response_stream = self.rater.get_response(text_data.text, text_data.result, confidence) for chunk in response_stream: