diff --git a/src/model/train.py b/src/model/train.py index bd25bf6..39424a8 100644 --- a/src/model/train.py +++ b/src/model/train.py @@ -1,7 +1,7 @@ import pandas as pd import numpy as np from sklearn.model_selection import train_test_split -from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup +from transformers import BertTokenizer, BertConfig, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup from torch.utils.data import DataLoader, TensorDataset, WeightedRandomSampler import torch from tqdm import tqdm @@ -9,7 +9,7 @@ import pyarrow.parquet as pq from sklearn.metrics import classification_report, confusion_matrix class FakeNewsModelTrainer: - def __init__(self, model_name='google-bert/bert-base-multilingual-cased', max_length=512): + def __init__(self, model_name='google-bert/bert-base-multilingual-cased', max_length=512, size_factor=0.5): self.model_name = model_name self.max_length = max_length self.tokenizer = BertTokenizer.from_pretrained(model_name) @@ -17,6 +17,28 @@ class FakeNewsModelTrainer: self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) + # Load the original config + original_config = BertConfig.from_pretrained(model_name) + + # Calculate new dimensions + new_hidden_size = max(int(original_config.hidden_size * size_factor ** 0.5), 16) + new_num_hidden_layers = max(int(original_config.num_hidden_layers * size_factor ** 0.5), 1) + new_num_attention_heads = max(int(original_config.num_attention_heads * size_factor ** 0.5), 1) + + # Create a new config with reduced size + config = BertConfig( + vocab_size=original_config.vocab_size, + hidden_size=new_hidden_size, + num_hidden_layers=new_num_hidden_layers, + num_attention_heads=new_num_attention_heads, + intermediate_size=new_hidden_size * 4, + max_position_embeddings=original_config.max_position_embeddings, + num_labels=2 + ) + + # Initialize the model with the new config + self.model = BertForSequenceClassification(config) + def prepare_data(self, df): texts = df.apply(lambda row: f"{row['title'] or ''} {row['text'] or ''}".strip(), axis=1).tolist() labels = df['label'].tolist()